
ASYNCHRONOUS PARALLEL GENERATING SET SEARCH FOR
LINEARLY-CONSTRAINED OPTIMIZATION

JOSHUA D. GRIFFIN† , TAMARA G. KOLDA† , AND ROBERT MICHAEL LEWIS∗

Abstract. We describe an asynchronous parallel derivative-free algorithm for linearly-constrained
optimization. Generating set search (GSS) is the basis of our method. At each iteration, a GSS al-
gorithm computes a set of search directions and corresponding trial points and then evaluates the
objective function value at each trial point. Asynchronous versions of the algorithm have been de-
veloped in the unconstrained and bound-constrained cases which allow the iterations to continue
(and new trial points to be generated and evaluated) as soon as any other trial point completes.
This enables better utilization of parallel resources and a reduction in overall runtime, especially for
problems where the objective function takes minutes or hours to compute. For linearly-constrained
GSS, the convergence theory requires that the set of search directions conforms to the nearby bound-
ary. This creates an immediate obstacle for asynchronous methods where the definition of nearby
is not well defined. In this paper, we develop an asynchronous linearly-constrained GSS method
that overcomes this difficulty and maintains the original convergence theory. We describe our im-
plementation in detail, including how to avoid function evaluations by caching function values and
using approximate look-ups. We test our implementation on every CUTEr test problem with general
linear constraints and up to 1000 variables. Without tuning to individual problems, our implemen-
tation was able to solve 95% of the test problems with 10 or fewer variables, 73% of the problems
with 11-100 variables, and nearly half of the problems with 100-1000 variables. To the best of our
knowledge, these are the best results that have ever been achieved with a derivative-free method for
linearly-constrained optimization. Our asynchronous parallel implementation is freely available as
part of the APPSPACK software.

Key words. nonlinear programming, constrained optimization, linear constraints, direct search,
derivative-free optimization, generalized pattern search (GPS), generating set search (GSS), asyn-
chronous parallel optimization, asynchronous parallel pattern search (APPS)

AMS subject classifications. 90C56, 90C30, 65K05, 15A06, 15A39, 15A48

1. Introduction. Generating set search (GSS), introduced in [18], is a family of
feasible-point methods for derivative-free optimization that encompasses generalized
pattern search [31, 2] and related methods. At each iteration, a GSS method evaluates
a set of trial points to see if any has a lower function value than the current iterate.
This set of evaluations can be performed in parallel, but load balancing is sometimes
an issue. For instance, the time for each evaluation may vary or the number of trial
points to be evaluated may not be an integer multiple of the number of available
processors.

To address the load balancing problem, asynchronous GSS algorithms move to
the next iteration as soon as one or more evaluations complete. This permits the par-
allel processors to exchange evaluated points immediately for new trial points, greatly
reducing processor idle time. The Asynchronous Parallel Pattern Search PACKage
(APPSPACK) was originally developed for pattern search methods for unconstrained
problems [15, 22, 21]. As of Version 4 (released in 2004), the underlying algorithm
was overhauled to provide better parallelism, implement GSS which generalizes pat-

†This work was supported by the Mathematical, Information, and Computational Sciences Pro-
gram of the U.S. Department of Energy, under contract DE-AC04-94AL85000 with Sandia Corpora-
tion. Computational Sciences and Mathematics Research Department, Sandia National Laboratories,
Livermore, CA 94551-9159. Email: {jgriffi,tgkolda}@sandia.gov
∗Department of Mathematics, College of William & Mary, P.O. Box 8795, Williamsburg, Virginia,

23187-8795; buckaroo@math.wm.edu. This research was supported by the Computer Science Research
Institute at Sandia National Laboratories and by the National Science Foundation under Grant DMS-
0215444.

1

HTTP://CSMR.CA.SANDIA.GOV/~JGRIFFIA/
HTTP://CSMR.CA.SANDIA.GOV/~TGKOLDA/
HTTP://WWW.MATH.WM.EDU/~BUCKAROO
mailto:buckaroo@math.wm.edu


2 J. D. Griffin, T. G. Kolda, and R. M. Lewis

tern search, and add support for bound constraints [11, 17]. APPSPACK is freely
available under the terms of the GNU L-GPL and has proved to be useful in a va-
riety of applications [3, 4, 7, 12, 13, 23, 26, 27, 28, 30]. The software can be run in
synchronous or asynchronous mode. In numerical experiments, our experience is that
the asynchronous mode has been as fast or faster than the synchronous mode; for
example, in recent work, the asynchronous method was 8–30% faster on a collection
of benchmark test problems in well-field design [17].

The goal of this paper is to study the problem of handling linear constraints in an
asynchronous context. The problem of linear constraints for GSS has been studied by
Kolda, Lewis, and Torczon [20], who present a GSS method for linearly-constrained
optimization, and Lewis, Shepherd, and Torczon [24], who discuss the specifics of a
serial implementation of GSS methods for linearly constrained optimization as well as
numerical results for five test problems. Both these papers build upon previous work
by Lewis and Torczon [25].

Key to understanding the difficulties encountered when transforming a synchronous
GSS algorithm to an asynchronous one is understanding how trial points are produced
in both approaches. At each iteration of a synchronous algorithm, a set of search di-
rections is computed; corresponding trial points are then produced by taking a step
of fixed length along each direction from the current iterate. Convergence theory re-
quires that the search directions conform to the nearby boundary where the definition
of “nearby” depends on the uniform step-length that is used to compute each trial
point. In the asynchronous case, however, if a trial point corresponding to a particular
direction completes and there is no improvement to the current iterate, a new trial
point is generated by taking a reduced step along this same direction. Unfortunately,
reducing the step-size can change the definition of the nearby boundary, necessitat-
ing a reexamination of the search directions. Thus, to maintain similar convergence
properties, an asynchronous algorithm must be able to simultaneously handle mul-
tiple definitions of “nearby” when generating search directions. In this paper, our
contribution is to show how to handle linear constraints by computing appropriate
search directions in an asynchronous context.

The asynchronous algorithm for linearly-constrained GSS is implemented in Ver-
sion 5 of APPSPACK. The implementation features details that make it suitable for
expensive real-world problems: scaling variables, re-use of function values, and nudg-
ing trial points to be on exactly the boundary. We also explain how to compute the
search directions (relying heavily on [24]), re-use previously computed directions, and
strategies for augmenting the search directions.

Our implementation has been tested on both real-world and academic test prob-
lems. For instance, researchers at Sandia National Laboratories have used APPSPACK
to solve linearly-constrained problems in microfluidics and in engine design. Here we
report extensive numerical results on the CUTEr test collection. We consider every
problem with general linear constraints and less than 1000 variables. Without tuning
to individual problems, our implementation was able to solve 95% of the test problems
with 10 or fewer variables, 73% of the problems with 11-100 variables, and nearly half
of the problems with 100-1000 variables, including a problem with 505 variables and
2000 linear constraints. To the best of our knowledge, these are the best results that
have ever been achieved with a derivative-free method for linearly-constrained opti-
mization. The CUTEr problems have trivial function evaluations; thus, in order to
simulate expensive objective function evaluations, we introduce artificial time delays.
In this manner, we are able to do computations that reflect our experience with real-



Asynchronous Parallel GSS for Linearly-Constrained Optimization 3

world problems and are able to compare the synchronous and asynchronous modes in
the software. Our results show that the asynchronous mode was up to 24% faster.

Throughout the paper, the linearly-constrained optimization problem we consider
is

minimize f(x)
subject to cL ≤ AIx ≤ cU

AEx = b.

(1.1)

Here f : Rn → R is the objective function. The matrix AI represents the linear
inequality constraints, including any bound constraints. Inequality constraints need
not be bounded on both sides; that is, we allow for entries of cL to be −∞, and entries
of cU to be +∞. The matrix AE represents the equality constraints.

The paper is organized as follows. We describe an asynchronous GSS algorithm
for linearly-constrained optimization problems in §2. In §3, we show that this algo-
rithm is guaranteed to converge to a KKT point under mild conditions. Moreover,
the asynchronous algorithm has the same theoretical convergence properties as its
synchronous counterpart in [20, 24]. Details that help to make the implementation
efficient are presented in §4, and we include numerical results on problems from the
CUTEr [10] test set in §5. We draw conclusions and discuss future work in §6.

2. Asynchronous GSS for problems with linear constraints. Here we
describe the algorithm for parallel, asynchronous GSS for linearly-constrained op-
timization. Kolda, Lewis, and Torczon [20] outline a GSS algorithm for problems
with linear inequality constraints and consider both the simple and sufficient decrease
cases. Lewis, Shepherd, and Torczon [24] extend this method to include linear equal-
ity constraints as well; if our algorithm required all points to be evaluated at each
iteration, it would be equivalent to their method. Kolda [17] describes a parallel
asynchronous GSS method for problems that are either unconstrained or bound con-
strained, considering both the simple and sufficient decrease cases. Here, we revisit
the asynchronous algorithm and extend it to handle problems with linear constraints.
As much as possible, we have adhered to the notation in [17].

The algorithm is presented in Algorithm 1, along with two subparts in Algo-
rithms 2 and 3. Loosely speaking, each iteration of the algorithm proceeds as follows.

1. Generate new trial points according to the current set of search directions
and corresponding step lengths.

2. Submit points to the evaluation queue and collect points whose evaluations
are complete.

3. If one of the evaluated trial points sufficiently improves on the current iterate,
set it to be the new “best point” and compute a new set of search directions.

4. Otherwise, update the step lengths and compute additional search directions
(if any) for the next iteration.

The primary change from Kolda [17] is that now the search directions can change at
every iteration. The set of search directions is recomputed every time a new “best
point” is discovered and additional directions may be added to the set of search
directions as the various step lengths decrease.

2.1. Algorithm notation. In addition to the parameters for the algorithm (dis-
cussed in §2.2), we assume that the user provides the linear constraints explicitly and
some means for evaluating f(x). The notation in the algorithm is as follows. We let
Ω denote the feasible region. Subscripts denote the iteration index.



4 J. D. Griffin, T. G. Kolda, and R. M. Lewis

The vector xk ∈ Ω ⊆ Rn denotes the best point, i.e., the point with the lowest
function value at the beginning of iteration k.

The set of search directions for iteration k is denoted by Dk = {d(1)
k , . . . , d

(|Dk|)
k }.

The superscripts denote the direction index, which ranges between 1 and |Dk| at
iteration k. Theoretically, we need only assume that ‖ d(i)

k ‖ is uniformly bounded.
For simplicity in our discussions and because it matches our implementation, we
assume

‖ d(i)
k ‖ = 1 for i = 1, . . . , |Dk|. (2.1)

The search directions need to positively span the search space. For the unconstrained
problem, a positive basis of Rn is sufficient; for the linearly-constrained case, we
instead need a set of vectors that positively spans the local feasible region. Specifically,
we need to find a set of generators for the local approximate tangent cone denoted by
T (xk, εk). This is critical for handling linear constraints and is disucussed in detail
in §2.3. Because the method is asynchronous, each direction has its own step length,
denoted by

∆(i)
k for i = 1, . . . , |Dk|.

The set Ak ⊆ {1, . . . , |Dk|} is the set of active indices, that is, the indices of those
directions that have an active trial point in the evaluation queue or that are converged
(i.e., ∆(i)

k < ∆tol). At iteration k, trial points are generated for each i 6∈ Ak. The
trial point corresponding to direction i at iteration k is given by y = xk+∆̃(i)

k d
(i)
k (see

Algorithm 2); we say that the point xk is the parent of y. In Algorithm 2, the values
of i, xk, f(xk), and ∆k are saved as Direction(y), Parent(y), ParentFx(y), and
Step(y), respectively. Conversely, pruning of the evaluation queue in Step 17 means
deleting those points that have not yet been evaluated; see §2.5.

In this paper, we focus solely on the sufficient decrease version of GSS. This means
that a trial point y must sufficiently improve upon its parent’s function value in order
to be considered as the next best point. Specifically, it must satisfy

f(y) < ParentFx(y)− ρ(Step(y)),

where ρ(·) is the forcing function. Algorithm 3 checks this condition, and we assume
that the forcing function is

ρ(∆) = α∆2,

where ∆ is the step length that was used to produce the trial point, and the multi-
plicand α is a user-supplied parameter of the algorithm. Other choices for ρ(∆) are
discussed in §3.2.2.

2.2. Initializing the algorithm. A few comments regarding the initialization
of the algorithm are in order. Because GSS is a feasible point method, the initial
point x0 must be feasible. If the given point is not feasible, we first solve a different
optimization problem to find a feasible point; see §5.2.

The parameter ∆tol is problem-dependent and plays a major role in determining
both the accuracy of the final solution and the number of iterations. Smaller choices
of ∆tol yield higher accuracy but the price is a (possibly significant) increase in the
number of iterations. If all the variables are scaled to have a range of 1 (see §4.1),



Asynchronous Parallel GSS for Linearly-Constrained Optimization 5

Algorithm 1 Asynchronous GSS for linearly-constrained optimization
Require: x0 ∈ Ω . initial starting point
Require: ∆tol > 0 . step length convergence tolerance
Require: ∆min > ∆tol . minimum first step length for a new best point
Require: δ0 > ∆tol . initial step length
Require: εmax > ∆tol . maximum distance for considering constraints nearby
Require: qmax ≥ 0 . max queue size after pruning
Require: α > 0 . sufficient decrease parameter, used in Alg. 3

1: G0 ← generators for T (x0, ε0) where ε0 = min{δ0, εmax}
2: D0 ← a set containing G0

3: ∆
(i)
0 ← δ0 for i = 1, . . . , |D0|

4: A0 ← ∅
5: for k = 0, 1, . . . do
6: Xk ← { xk + ∆̃

(i)
k d

(i)
k | 1 ≤ i ≤ |Dk|, i 6∈ Ak } (see Alg. 2) . generate trial points

7: send trial points Xk (if any) to the evaluation queue
8: collect a (non-empty) set Yk of evaluated trial points
9: Ȳk ← subset of Yk that has sufficient decrease (see Alg. 3)

10: if there exists a trial point yk ∈ Ȳk such that f(yk) < f(xk) then . successful
11: xk+1 ← yk

12: δk+1 ← max{Step(yk),∆min}
13: Gk+1 ← generators for T (xk+1, εk+1) where εk+1 = min{δk+1, εmax}
14: Dk+1 ← a set containing Gk+1

15: ∆
(i)
k+1 ← δk+1 for i = 1, . . . , |Dk+1|

16: Ak+1 ← ∅
17: prune the evaluation queue to qmax or fewer entries
18: else . unsuccessful
19: xk+1 ← xk

20: Ik ← {Direction(y) : y ∈ Yk and Parent(y) = xk}
21: δk+1 ← min

{
1
2
∆

(i)
k | i ∈ Ik

}
∪
{

∆
(i)
k | i 6∈ Ik

}
22: Gk+1 ← generators for T (xk+1, εk+1) where εk+1 = min{δk+1, εmax}
23: Dk+1 ← a set containing Dk ∪ Gk+1

24: ∆
(i)
k+1 ←


1
2
∆

(i)
k for 1 ≤ i ≤ |Dk| and i ∈ Ik

∆
(i)
k for 1 ≤ i ≤ |Dk| and i 6∈ Ik

δk+1 for |Dk| < i ≤ |Dk+1|
25: Ak+1 ← { i | 1 ≤ i ≤ |Dk|, i 6∈ Ik } ∪ { i | 1 ≤ i ≤ |Dk+1|,∆(i)

k < ∆tol }
26: end if
27: if ∆

(i)
k+1 < ∆tol for i = 1, . . . , |Dk+1| then terminate

28: end for

choosing ∆tol = 0.01 means that the algorithm terminates when the change in each
parameter is less than 1%.

The minimum step size following a successful iteration must be set to some value
greater than ∆tol and defaults to ∆min = 2∆tol. A typical choice for the initial
step length is δ0 = 1; relatively speaking, bigger initial step lengths are better than
smaller ones. The parameter εmax forms an upper bound on the maximum distance
used to determine whether a constraint is nearby and must also be greater than ∆tol.
A typical choice is εmax = 2∆tol. The pruning parameter qmax is usually set equal
to the number of worker processors, implying that the evaluation queue is always
emptied save for points currently being evaluated. The sufficient decrease parameter



6 J. D. Griffin, T. G. Kolda, and R. M. Lewis

Algorithm 2 Generating trial points
1: for all i ∈ {1, . . . , |Dk|} \ Ak do
2: ∆̄ = max{ ∆ > 0 | xk + ∆d(i)

k ∈ Ω } . max feasible step
3: ∆̃(i)

k = min{∆(i)
k , ∆̄}

4: if ∆̃(i)
k > 0 then

5: y ← xk + ∆̃(i)
k d

(i)
k

6: Step(y)← ∆(i)
k

7: Parent(y)← xk
8: ParentFx(y)← f(xk)
9: Direction(y)← i

10: add y to collection of trial points
11: else
12: ∆(i)

k ← 0
13: end if
14: end for

Algorithm 3 Sufficient decrease check
1: Ȳk ← ∅
2: for all y ∈ Yk do
3: f̂ ← ParentFx(y)
4: ∆̂← Step(y)
5: if f(y) < f̂ − α∆̂2 then
6: Ȳk ← Ȳk ∪ {y}
7: end if
8: end for

α is typically chosen to be some small constant such as α = 0.01.

2.3. Updating the search directions. In Steps 1, 13, and 22, a set of con-
forming search directions, with respect to x and ε, is computed. We seek directions
that generate T (xk, εk), the εk-tangent cone about xk. Readers unfamiliar with cones
and generators may jump ahead to §3.1.1. Several examples of conforming search
directions for particular choices of xk and εk are shown in Figure 2.1. The idea is to
be able to walk parallel to the nearby boundary. The details of actually computing
the generators of a particular cone are described in §4.4. The question here is how we
define “nearby”, i.e., the choice of εk. The choice of εk depends on ∆k; specifically, we
set εk = min{∆k, εmax} as is standard [20, 24]. Using an upper bound εmax prevents
us from considering constraints that are too far away. If εk is too large, the εk-tangent
cone may be empty as seen in Figure 2.1(d).

In the asynchronous case, meanwhile, every search direction has its own step
length, ∆(i)

k . Consequently, Dk, the set of search directions at iteration k, must
contain generators for each of the following cones:

T (xk, ε
(i)
k ) where ε(i)k = min{∆(i)

k , εmax} for i = 1, . . . , |Dk|. (2.2)

This requirement is not as onerous as it may at first seem. After successful iterations,
the step sizes are all equal, so only one tangent cone is relevant (Step 13). It is
only after an unsuccessful iteration that generators for multiple tangent cones may



Asynchronous Parallel GSS for Linearly-Constrained Optimization 7

(a) The ε-ball does not intersect any
constraints; any positive spanning set can
be used.

(b) The current iterate is on the
boundary and its ε-ball intersects with
two constraints.

(c) The current iterate is not on the
boundary but its ε-ball intersects with
two constraints.

(d) The value of ε is so large that the
corresponding ε-tangent cone is empty.

Fig. 2.1. Different sets of conforming directions as x (denoted by a star) and ε vary.

be needed simultaneously. As the individual step sizes ∆(i)
k are reduced in Step 24,

generators for multiple values of ε may need to be included. Because εk+1 ∈ {εk, 1
2εk}

in Step 21, we need add at most one set of search directions per iteration in order to
satisfy (2.2). If δk+1 = δk or δk+1 ≥ εmax, then εk+1 = εk, so there will be no difference
between T (xk+1, εk+1) and T (xk, εk). Consequently, we can skip the calculation of
extra directions in Step 13 and Step 22. Even when εk+1 < εk, the corresponding set
of new ε-active constraints may remain unchanged, i.e. N(xk+1, εk+1) = N(xk, εk)
implying Dk+1 = Dk. When the ε-active constraints do differ, we generate conforming
directions for the new tangent cone in Step 22 and merge the new directions with the
current direction set in Step 23.

2.4. Trial Points. In Step 6, trial points are generated for each direction that
does not already have an associated trial point and is not converged. Algorithm 2
provides the details of generating trial points. If a full step is not possible, then the
method takes the longest possible feasible step. However, if no feasible step may be
taken in direction d

(i)
k , the step length ∆(i)

k is set to zero. Note that Step(y) stores
∆(i)
k as opposed to the truncated step size ∆̃(i)

k . This is important because the stored
step is used as the basis for the new initial step in Step 12 and so prevents the steps
from becoming prematurely small even if the feasible steps are short.

The set of trial points collected in Step 8 may not include all the points in Xk
and may include points from previous iterations.



8 J. D. Griffin, T. G. Kolda, and R. M. Lewis

2.5. Successful Iterations. The candidates for the new best point are first
restricted (in Step 9) to those points that satisfy the sufficient decrease condition.
The sufficient decrease condition is with respect to the point’s parent, which is not
necessarily xk. The details for verifying this condition are in Algorithm 3. Next, in
Step 10, we check whether or not any point strictly improves the current best function
value. If so, the iteration is called successful.

In this case, we update the best point, reset the search directions and correspond-
ing step lengths, prune the evaluation queue, and reset the set of active directions
Ak+1 to the empty set. Note that we reset the step length to δk+1 in Step 15 and that
this value is the maximum of ∆min and the step that produced the new best point
(see Step 12). The constant ∆min is used to reset the step length for each new best
point and is needed for the theory that follows; see Proposition 3.8. In a sense, ∆min

can be thought of as a mechanism for increasing the step size, effectively expanding
the search radius after successful iterations.

The pruning in Step 17 ensures that the number of items in the evaluation queue
is always finitely bounded. In theory, the number of items in the queue may grow
without bound [17].

2.6. Unsuccessful Iterations. If the condition in Step 10 is not satisfied, then
we call the iteration unsuccessful. In this case, the best point is unchanged (xk+1 =
xk). The set Ik in Step 20 is the set of direction indices for those evaluated trial
points that have xk as their parent. If Ik = ∅ (in the case that no evaluated point
has xk as its parent), then nothing changes; that is, Dk+1 ← Dk, ∆(i)

k+1 ← ∆(i)
k for

i ← 1, . . . , |Dk+1|, and Ak+1 ← Ak. If Ik 6= ∅, we reduce step sizes corresponding to
indices in Ik and add new directions to Dk+1 as described in §2.3.

It is important that points never be pruned during unsuccessful iterations. Prun-
ing on successful iterations offers the benefit of freeing up the evaluation queue so that
points nearest the new best point may be evaluated first. In contrast, at unsuccessful
iterations, until a point has been evaluated, no information exists to suggest that
reducing the step size and resubmitting will be beneficial. Theoretically, the basis for
Proposition 3.8 hinges upon the property that points are never pruned until a new
best point is found.

2.7. An illustrated example. In Figure 2.2, we illustrate six iterations of Al-
gorithm 1, applied to the test problem

minimize f(x) =
√

9x2
1 + (3x2 − 5)2 − 5 exp

(
−1

(3x1+2)2+(3x2−1)2+1

)
subject to

3x1 ≤ 4
−2 ≤ 3x2 ≤ 5

−3x1 − 3x2 ≤ 2
−3x1 + 3x2 ≤ 5.

(2.3)

We initialize Algorithm 1 with x0 = a, ∆tol = 0.01 (though not relevant in the
iterations we show here), ∆min = 0.02 (likewise), ∆0 = 1, εmax = 1, qmax = 2, and
α = 0.01.

The initial iteration is shown in Figure 2.2a. Shaded level curves illustrate the
value of the objective function, with darker shades representing lower values. The
feasible region is inside of the pentagon. The current best point, x0 = a, is denoted
by a star. We calculate search directions (shown as lines emanating from the current
best point to corresponding trial points) that conform to the constraints captured in
the ε0-ball. We generate the trial points b and c, both of which are submitted to the



Asynchronous Parallel GSS for Linearly-Constrained Optimization 9

x0 = a, δ0 = 1, ε0 = 1

D0 =

{[
1√
2

1√
2

]
,

[
1√
2
−1√

2

]}
∆(1)

0 = ∆(2)
0 = 1

X0 = {b, c}, Queue = {b, c}

Wait for evaluator to return. . .

Y0 = {c}, Queue = {b}
f(c) < f(a)− ρ(∆(1)

0 )
⇒ Successful

Fig. 2.2a. Iteration k = 0 for example problem

x1 = c, δ1 = 1, ε1 = 1

D1 =

{[
−1√

2
1√
2

]
,

[
1
0

]}
∆(1)

1 = ∆(2)
1 = 1

X1 = {d, e}, Queue = {b,d, e}

Wait for evaluator to return. . .

Y1 = {d}, Queue = {b, e}
f(d) ≥ f(c)
⇒ Unsuccessful

Fig. 2.2b. Iteration k = 1 for example problem

x2 = c, δ2 = 1
2 , ε2 = 1

2
D2 = D1

∆(1)
2 = 1

2 , ∆(2)
2 = 1

X2 = {f}, Queue = {b, e, f}

Wait for evaluator to return. . .

Y2 = {f ,b}, Queue = {e}
f(b) < f(a)− ρ(∆(1)

0 ) and f(b) < f(c)
⇒ Successful

Fig. 2.2c. Iteration k = 2 for example problem

evaluation queue. We assume that only a single point, c, is returned by the evaluator.
In this case, the point satisfies sufficient decrease with respect to its parent, a, and
necessarily also satisfies simple decrease with respect to the current best point, a.

Figure 2.2b shows the next iteration. The best point is updated to x1 = c. The
point b is what we call an orphan because its parent is not the current best point. The
set of nearby constraints changes, so the search directions also change, as shown. The
step lengths are all set to δ1 = 1, generating the new trial points d and e, which are



10 J. D. Griffin, T. G. Kolda, and R. M. Lewis

x3 = b, δ3 = 1, ε3 = 1

D3 =

{[
−1√

2
−1√

2

]
,

[
1
0

]}
∆(1)

3 = ∆(2)
3 = 1

X3 = {g,h}, Queue = {e,g,h}

Wait for evaluator to return. . .

Y3 = {e,g}, Queue = {h}
f(g), f(e) ≥ f(b)
⇒ Unsuccessful

Fig. 2.2d. Iteration k = 3 for example problem

x4 = b, δ4 = 1
2 ε4 = 1

2

D4 =

{
D3,

[
1√
2

1√
2

]
,

[
1√
2
−1√

2

]}
∆(i)

4 = 1
2 for i = 1, 3, 4, ∆(2)

4 = 1
X4 = {i, j,k}, Queue = {h, i, j,k}

Wait for evaluator to return. . .

Y4 = {h}, Queue = {i, j,k}
f(h) ≥ f(b)
⇒ Unsuccessful

Fig. 2.2e. Iteration k = 4 for example problem

x5 = b, δ5 = 1
2 , ε5 = 1

2
D5 = D4

∆(i)
5 = 1

2 for i = 1, 2, 3, 4

And the process continues. . .

Fig. 2.2f. Iteration k = 5 for example problem

submitted to the evaluation queue. Once again, the evaluator returns a single point,
d. In this case, d does not satisfy the sufficient decrease condition, so the iteration is
unsuccessful.

In Figure 2.2c, the best point is unchanged, i.e., x2 = x1 = c. The value of δ2
and hence ε2 is reduced to 1

2 . In this case, however, the set of ε-active constraints is
unchanged, so D2 = D1. The step length corresponding to the first direction, ∆(1)

2 ,



Asynchronous Parallel GSS for Linearly-Constrained Optimization 11

is reduced and a new trial point, f , is submitted to the queue. This time, two points
return as evaluated, f and b, the latter of which has the lower function value. In this
case, we check that b satisfies sufficient decrease with respect to its parent, a, and
that it also satisfies simple decrease with respect to the current best point, c. Both
checks are satisfied, so the iteration is successful.

In Figure 2.2d, we have a new best point, x3 = b. The value of δ3 is set to 1.0, the
step length that was used to generate the point b. Conforming search directions are
generated for the new ε-active constraints. The trial points {g,h} are submitted to the
evaluation queue. In this case, the points e and g are returned, but neither satisfies
sufficient decrease with respect to its parent. Thus, the iteration is unsuccessful.

In Figure 2.2e, the best point is unchanged, so x4 = x3 = b. However, though
our current point did not change, ε4 = 1

2 is reduced because δ4 = 1
2 is reduced. In

contrast to iteration 2, the ε-active constraints have changed. The generators used
for T (x4,

1
2 ) are {[

−1√
2
−1√

2

]
,

[
1√
2

1√
2

]
,

[
1√
2
−1√

2

]}
.

The first direction is already in D3; thus, we need only add the last two directions to
form D4. In this iteration, only the point h is returned, but it does not improve the
function value, so the iteration is unsuccessful.

For Figure 2.2f, we have δ5 = δ4, so there is no change in the search directions.
The only change is that the step corresponding to direction 2 is reduced. And the
iterations continue.

3. Theoretical properties. In this section we prove global convergence for the
asynchronous GSS algorithm described in Algorithm 1. A key theoretical difference
between GSS and asynchronous GSS is that all the trial points generated at iteration
k may not be evaluated in that same iteration. This necessitates having multiple sets
of directions in Dk corresponding to different ε-tangent cones.

3.1. Definitions and terminology.

3.1.1. ε-normal and ε-tangent cones. Integral to GSS convergence theory are
the concepts of tangent and normal cones [20]. A cone K is a set in Rn that is closed
under nonnegative scalar multiplication; that is, αx ∈ K if α ≥ 0 and x ∈ K. The
polar of a cone K, denoted by K◦, is defined by

K◦ =
{
w | wT v ≤ 0 ∀ v ∈ K

}
,

and is itself a cone. Given a convex cone K and any vector v, there is a unique
closest point of K to v called the projection of v onto K and denoted vK . Given a
vector v and a convex cone K, there exists an orthogonal decomposition such that
v = vK + vK◦ , vTKvK◦ = 0, with vK ∈ K and vK◦ ∈ K◦. A set G is said to generate
a cone K if K is the set of all nonnegative combinations of vectors in G.

For a given x, we are interested in the ε-tangent cone, which is the tangent cone
of the nearby constraints. Following [24], we define the ε-normal cone N(x, ε) to be
the cone generated by the outward pointing normals of constraints within distance ε
of x. Moreover, distance is measure within the nullspace of AE . The ε-tangent cone
is then defined as the polar to the ε-normal cone, i.e., T (x, ε) ≡ N(x, ε)◦.

We can form generators for N(x, ε) explicitly from the rows of AI and AE as
follows. Let (AI)i denote the ith row of AI and let (AI)S denote the submatrix of



12 J. D. Griffin, T. G. Kolda, and R. M. Lewis

AI with rows specified by S. Let Z denotes an orthonormal basis for the nullspace of
AE . For a given x and ε we can then define the index sets of ε-active constraints for
AI as

EB = {i : | (AI)ix− (cU )i | ≤ ε‖ (AI)iZ ‖ and | (AI)ix− (cL)i | ≤ ε‖ (AI)iZ ‖} (both),
EU = {i : | (AI)ix− (cU )i | ≤ ε‖ (AI)iZ ‖} \ EB (only upper), and
EL = {i : | (AI)ix− (cL)i | ≤ ε‖ (AI)iZ ‖} \ EB (only lower),

and define matrices VP and VL as

VP =
[

(AI)EU

−(AI)EL

]T
and VL =

[
AE
(AI)EB

]T
. (3.1)

Then the set

V(x, ε) = { v | v is a column of [VP , VL,−VL] }

generates the cone N(x, ε). We delay the description of how to form generators for
the polar T (x, ε) until §4.4 because the details of its construction are not necessary
for the theory.

The following measure of the quality of a given set of generators G will be needed
in the analysis that follows and comes from [20, 24, 18]. For any finite set of vectors
G, we define

κ(G) ≡ inf
v∈Rn

vK 6=0

max
d∈G

vT d

‖ vK ‖‖ d ‖
, where K is the cone generated by G. (3.2)

Examples of κ(G) can be found in [18, §3.4.1]. It can be shown that κ(G) > 0 if
G 6= {0} [20, 25]. As in [20] we make use of the following definition:

νmin = min{κ(V) : V = V(x, ε), x ∈ Ω, ε ≥ 0, V(x, ε) 6= 0}, (3.3)

which provides a measure of the quality of the constraint normals serving as generators
for their respective ε-normal cones. Because only a finite number of constraints exists,
there is a finite number of possible normal cones. Since κ(V) > 0 for each normal
cone, we must have that νmin > 0. We will need the following proposition in the
analysis that follows:

Proposition 3.1 ([20]). If x ∈ Ω, then for all ε ≥ 0 and v ∈ Rn,

max
x+w∈Ω
‖w‖=1

wT v ≤ ‖vT (x,ε)‖+
ε

νmin
‖vN(x,ε)‖,

where νmin is defined in (3.3).

3.1.2. A measure of stationarity. In our analysis, we use the first-order op-
timality measure

χ(x) ≡ max
x+w∈Ω
‖w‖≤1

−∇f(x)Tw, (3.4)

that has been used in previous analyses of GSS methods in the context of general
linear constraints [18, 17, 20, 24]. This measure was introduced in [6, 5] and has the
following three properties:



Asynchronous Parallel GSS for Linearly-Constrained Optimization 13

1. χ(x) ≥ 0,
2. χ(x) is continuous (if ∇f(x) is continuous), and
3. χ(x) = 0 for x ∈ Ω if and only if x is a KKT point.

Thus any convergent sequence {xk} satisfying limk→∞ χ(xk) = 0 necessarily converges
to a first-order stationary point.

3.2. Assumptions and conditions.

3.2.1. Conditions on the generating set. As in [20, 24], we require that
κ(Gk), where Gk denotes the conforming directions generated in Steps 1, 13, and 22
of Algorithm 1, be uniformly bounded below.

Condition 3.2. There exists a constant κmin, independent of k, such that
for every k for which T (xk, εk) 6= {0}, the set Gk generates T (xk, εk) and
satisfies κ(Gk) ≥ κmin, where κ(·) is defined in (3.2).

3.2.2. Conditions on the forcing function. Convergence theory for GSS
methods typically requires either that all search directions lie on a rational lattice
or that a sufficient decrease condition be imposed [18, 20]. This latter condition en-
sures that f(x) is sufficiently reduced at each successful iteration. Both rational lattice
and sufficient decrease conditions are mechanisms for globalization; each ensures that
the step size ultimately becomes arbitrarily small if f(x) is bounded below [18, 20, 17].
We only consider the sufficient decrease case because it allows a better choice of step;
see [24, §8.2]. Specifically, we use the forcing function

ρ(∆) = α∆2,

where α > 0 is specified by the user in Algorithm 3.
In general, the forcing function ρ(·) must satisfy Condition 3.3.

Condition 3.3. Requirements on the forcing function ρ(·):
1. ρ(·) is a nonnegative continuous function on [0,+∞).
2. ρ(·) is o(t) as t ↓ 0; i.e., lim

t↓0
ρ(t) / t = 0.

3. ρ(·) is nondecreasing; i.e., ρ(t1) ≤ ρ(t2) if t1 ≤ t2.
4. ρ(·) is such that ρ(t) > 0 for t > 0.

Any forcing function may be substituted in Algorithm 3. For example, another
valid forcing function is

ρ(∆) =
α∆2

β + ∆2
, (3.5)

for α, β > 0. The latter may offer some advantages because it does not require
quadratic improvement for step sizes larger than 1 and consequently more trial points
will be accepted as new minimums.

3.2.3. Assumptions on the objective function. We need to make some stan-
dard assumptions regarding the objective function. The first two assumptions do not
require any continuity; only the third assumption requires that the gradient be Lips-
chitz continuous.



14 J. D. Griffin, T. G. Kolda, and R. M. Lewis

Assumption 3.4. The set F = { x ∈ Ω | f(x) ≤ f(x0) } is bounded.

Assumption 3.5. The function f is bounded below on Ω.

Assumption 3.6. The gradient of f is Lipschitz continuous with constant
M on F .

As in [20] we combine Assumptions 3.4 and 3.6 to assert the existence of a constant
γ > 0 such that

‖∇f(x) ‖ ≤ γ, (3.6)

for all x ∈ F .

3.2.4. Assumptions on the asynchronicity. In the synchronous case, we im-
plicitly assume that the evaluation time for any single function evaluation is finite.
However, in the asynchronous case, that assumption must be made explicit for the
theory that follows even though it has no direct relevance to the algorithm. More
discussion of this condition can be found in [17].

Condition 3.7. There exists an η < +∞ such that the following holds. If
a trial point is submitted to the evaluation queue at iteration k, either its
evaluation will have been completed or it will have been pruned from the
evaluation queue by iteration k + η.

3.3. Bounding a measure of stationarity. In this section, we prove global
convergence for Algorithm 1 by showing (in Theorem 3.10) that χ(xk) can be bounded
in terms of the step size.

Synchronous GSS algorithms obtain optimality information at unsuccessful itera-
tions because all points corresponding to the ε-tangent cone have been evaluated and
rejected. In this case, we can bound χ(x) from (3.4) in terms of the step size ∆k [20].
In asynchronous GSS, however, multiple unsuccessful iterations may pass before all
points corresponding to generators of a specific ε-tangent cone have been evaluated.
Proposition 3.8 says when we may be certain that all relevant points with respect to
a specific ε-tangent cone have been evaluated and rejected.

Proposition 3.8. Suppose Algorithm 1 is applied to the optimization problem
(1.1). Furthermore, at iteration k suppose we have

∆̂k ≡ max
1≤i≤pk

{
2∆(i)

k

}
≤ min(∆min, εmax).

Let G be a set of generators for T (xk, ∆̂k). Then G ⊆ Dk and

f(xk)− f(xk + ∆̂kd) ≥ ρ(∆̂k) for all d ∈ G. (3.7)

Recall that ρ(·) is the forcing function discussed in §3.2.2.



Asynchronous Parallel GSS for Linearly-Constrained Optimization 15

Proof. Let k∗ ≤ k be the most recent successful iteration (iteration zero is by
default successful). Then x` = xk for all ` ∈ {k∗, . . . , k}. Since ∆̂k ≤ ∆min, there
exists k̂ with k∗ ≤ k̂ ≤ k such that δk̂ = ∆̂k in either Step 12 or Step 21 of Algorithm 1.
Moreover, since ∆̂k ≤ εmax, we have εk̂ = ∆̂k as well. Recalling that G comprises
generators for T (xk, ∆̂k) = T (xk̂, εk̂), we have then that G was appended to Dk̂ (in
either Step 14 or Step 23). Therefore, G ⊆ Dk because there has been no successful
iteration in the interim.

Now, every direction in G was appended with an initial step length greater than or
equal to ∆̂k. However, all the current step lengths are strictly less that ∆̂k. Therefore,
every point of the form

xk + ∆̂kd, d ∈ G,

has been evaluated. (Note that, by definition of T (xk, ∆̂k), xk + ∆̂kd ∈ Ω for all
d ∈ G. Hence ∆̃k = ∆̂k for all d ∈ G.) None of these points has produced a
successful iteration, and every one has parent xk, therefore, (3.7) follows directly
from Algorithm 3.

Using the previous result, we can now show that the projection of the gradient
onto a particular ε-tangent cone is bounded as a function of the step length ∆k.

Theorem 3.9. Consider the optimization problem (1.1), satisfying Assump-
tion 3.6 along with Conditions 3.2 and 3.3. If

∆̂k ≡ max
1≤i≤pk

{
2∆(i)

k

}
≤ min(∆min, εmax),

then

‖ [−∇f(xk)]T (xk,∆̂k) ‖ ≤
1

κmin

(
M∆̂k +

ρ(∆̂k)
∆̂k

)
,

where the constant κmin is from Condition 3.2 and M is the Lipschitz constant on
∇f(x) from Assumption 3.6.

Proof. Let G denote a set of generators for T (xk, ∆̂k). By Condition 3.2 and
(2.1), there exists a d̂ ∈ G such that

κmin ‖ [−∇f(xk)]T (xk,∆̂k) ‖ ≤ −∇f(xk)T d̂. (3.8)

Proposition 3.8 ensures that

f(xk + ∆̂kd̂)− f(xk) ≥ −ρ(∆̂k).

The remainder of the proof follows [20, Theorem 6.3] and so is omitted.
The previous result involves a specific ε-tangent cone. The next result generalizes

this to bound the measure of stationarity χ(xk) in terms of the step length ∆k.
Theorem 3.10. Suppose Assumptions 3.4 and 3.6 hold for (1.1) and that Algo-

rithm 1 satisfies Conditions 3.2 and 3.3. Then if

∆̂k ≡ max
1≤i≤pk

{
2∆(i)

k

}
≤ min(∆min, εmax),

we have

χ(xk) ≤
(
M

κmin
+

γ

νmin

)
∆̂k +

1
κmin

ρ(∆̂k)
∆̂k

. (3.9)

Proof. This proof follows [20, Theorem 6.4] with appropriate modifications to use
∆̂k and so is omitted.



16 J. D. Griffin, T. G. Kolda, and R. M. Lewis

3.4. Globalization. Next, in Theorem 3.12, we show that the maximum step
size becomes arbitrarily close to zero. This is the globalization of GSS methods [18].
The proof hinges upon the following two properties of Algorithm 1 when Condition 3.7
holds:

1. The current smallest step length decreases by at most a factor of two at each
unsuccessful iteration.

2. The current largest step-size decreases by at least a factor of two after every
η consecutive unsuccessful iterations.

Before proving Theorem 3.12 we first prove the following proposition which says that,
given any integer J , one can find a sequence of J or more consecutive unsuccessful
iterations, i.e., the number of consecutive unsuccessful iterations necessarily becomes
arbitrarily large.

Proposition 3.11. Suppose that Assumption 3.5 holds for problem (1.1) and
that Algorithm 1 satisfies Condition 3.3 and Condition 3.7. Let S = {k0, k1, k2, . . . }
denote the subsequence of successful iterations. If the number of successful iterations
is infinite, then

lim sup
i→∞

(ki − ki−1) =∞.

Proof. Suppose not. Then there exists an integer J > 0 such that ki − ki−1 < J
for all i. We know that, at each unsuccessful iteration, the smallest step size either
has no change or decreases by a factor of two. Furthermore, for any k ∈ S, we have
∆(i)
k ≥ ∆min. Therefore, since a success must occur every J iterations, we have

min
1≤i≤|Dk|

{
∆(i)
k

}
≥ 2−J∆min, for all k.

Note the previous bound holds for all iterations, successful and unsuccessful.
Let Ŝ = {`0, `1, `2, . . . } denote an infinite subsequence of S with the additional

property that its members are at least η apart, i.e.,

`i − `i−1 ≥ η.

Since the parent of any point xk can be at most η iterations old by Condition 3.7,
this sequence has the property that

f(x`i−1) ≥ ParentFx(x`i) for all i.

Combining the above with the fact that ρ(·) is nondecreasing from Condition 3.3,
we have

f(x`i)− f(x`i−1) ≤ f(x`i)−ParentFx(x`i) ≤ −ρ(∆̂) ≤ −ρ(2−J∆min) ≡ −ρ?,

where ∆̂ = Step(x`i). Therefore,

lim
i→∞

f(x`i)− f(x0) = lim
i→∞

i∑
j=1

f(x`j )− f(x`j−1) ≤ lim
i→∞

−iρ? = −∞,

contradicting Assumption 3.5.
Theorem 3.12. Suppose that Assumption 3.5 holds for problem (1.1) and that

Algorithm 1 satisfies Condition 3.3 and Condition 3.7. Then

lim inf
k→∞

max
1≤i≤pk

{
∆(i)
k

}
= 0.



Asynchronous Parallel GSS for Linearly-Constrained Optimization 17

Proof. Condition 3.7 implies that the current largest step-size decreases by at
least a factor of two after every η consecutive unsuccessful iterations. Proposition 3.11
implies that the number of consecutive unsuccessful iterations can be made arbitrarily
large. Thus the maximum step size can be made arbitrarily small and the result
follows.

3.5. Global convergence. Finally, we can combine Theorem 3.10 and Theo-
rem 3.12 to immediately get our global convergence result.

Theorem 3.13. If problem (1.1) satisfies Assumptions 3.4, 3.5, and 3.6 and
Algorithm 1 satisfies Conditions 3.2, 3.3, and 3.7, then

lim inf
k→∞

χ(xk) = 0.

4. Implementation Details. In this section we provide details of the imple-
mentation. For the most part we integrate the strategies outlined in [11, 14, 24].

4.1. Scaling. GSS methods are extremely sensitive to scaling, so it is important
to use an appropriate scaling to get the best performance [11]. As is standard (c.f.,
[24]), we construct a positive, diagonal scaling matrix S = diag(s) ∈ Rn×n and a shift
r ∈ Rn to define the transformed variables as

x̂ = S−1(x− r).

Once we have computed an appropriate scaling matrix S and shift vector r, we trans-
form (1.1) to

minimize f̂(x̂)

subject to ĉL ≤ ÂI x̂ ≤ ĉU
ÂE x̂ = b̂,

(4.1)

where

f̂(x̂) ≡ f(Sx̂+ r) ÂI ≡ AIS
ÂE ≡ AES ĉL ≡ cL −AIr

b̂ ≡ b−AEr ĉU ≡ cU −AIr.

Ideally, the simple bounds are transformed to the unit hypercube:

{ x̂ | 0 ≤ x̂ ≤ e } .

In the numerical experiments in §5, we used

si =

{
ui − `i if ui, `i are finite
1 otherwise,

and ri =

{
`i if `i > −∞
0 otherwise.

From this point forward, we use the notation in (1.1) but assume that the problem is
appropriately scaled, i.e., as in (4.1).

The theory is not affected by scaling the variables, but differently scaled variables
tend to make GSS methods very slow. For instance, Hough et al. [15] study a cir-
cuit simulation problem where the variable ranges differ by more than 10 orders of
magnitude, but APPS is able to solve an appropriately scaled version of the problem.



18 J. D. Griffin, T. G. Kolda, and R. M. Lewis

4.2. Function value caching. In the context of generating set search algo-
rithms, we frequently re-encounter the same trial points. In order to avoid repeating
expensive function evaluations, we cache the function value of every point that is
evaluated. Moreover, cached values can be used across multiple optimization runs.

An important feature of our implementation is that we do not require that points
be exactly equal in order to use the cache. Instead, we say that two points, x and y,
are ξ-equal if

|yi − xi| ≤ ξ si, for i = 1, 2, . . . , n.

Here ξ is the cache comparison tolerance and si is the scaling of the ith variable.
Note that this comparison function corresponds to a lexicographic ordering of the
points. Consequently, we can store them in a binary splay tree which in turn provides
extremely efficient look-ups [14].

If the two-norm based comparison

‖ y − x ‖ ≤ ξ,

is used as in [24], then the work to do a cache look-up grows linearly with the number
of cached points and is inefficient.

The choice of ξ should reflect the sensitivity of the objective function. In our
experience, practitioners often have a sense what this should be. If a 1% change in the
variables is not expected to impact the objective function, than choosing ξ = 0.01 is
clearly reasonable. Setting ξ = 0 forces an exact match (within machine precision) and
thus conforms with the convergence theory. The default ξ = .5∆tol is half as big as the
smallest step size that the algorithm can take (unless the boundary is nearby). This
means that the stopping condition is ideally using truly distinct function evaluations
to make its stopping decision. The significant reduction in function evaluations is the
reward for relaxing the comparison tolerance (see §5).

4.3. Snapping to the boundary. In Algorithm 2, we modify the step length in
order to step exactly to the boundary whenever the full step would have produced an
infeasible trial point. Conversely, it is sometimes useful to “snap” feasible trial points
to the boundary when they are very close to it because, in real-world applications,
it is not uncommon for the objective function to be highly sensitive to whether or
not a constraint is active. For example, an “on/off” switch may be activated in the
underlying simulation only if a given xi lies on its bound. A further subtle point
is that if a function value cache like that in §4.2 is used, the cache lookup may
preclude evaluation of points on the boundary that lie within the cache tolerance
neighborhood of a previously evaluated point that is not on the boundary. This
modification is wholly based on practical experience and not justified by the theory,
yet is has not negatively affected convergence (using the default value of the cache
tolerance parameter) in our experience.

Suppose that x is a trial point produced by Algorithm 2. We modify the point x
as follows. Let S denote the set of constraints within a distance εsnap of x, defining
the system

(AI)Sz = (cI)S , (4.2)

where (cI) represents the appropriate lower or upper bound, whichever is active. We
prune dependent rows from (4.2) so that the matrix has full row rank. A row is
considered dependent if the corresponding diagonal entry for the matrix R from the



Asynchronous Parallel GSS for Linearly-Constrained Optimization 19

QR factorization of AT is less than 10−12. LAPACK is then used to find the point z
that minimizes ‖x− z ‖ subject to the equality constraints (4.2). If the solution z to
the generalized least-squares problem is feasible for (1.1), reset x = z before sending
the trial point to the evaluation queue. Note that this modification is included for
practical concerns mentioned in the preceding paragraph and is not a theoretically
necessary modification to x; hence, if the LAPACK fails to find a solution to the
generalized least-squares problem due to near linear dependency in the constraint
matrix, we simply use the original point x. Like the caching of function values, the
proposed modification is based upon the final step tolerance chosen by the user; which
as stated in Theorem 3.10, denotes an implicit bound on the KKT conditions. Thus
the modifications are on the order of the accuracy specified by the user.

4.4. Generating conforming search directions. In Steps 1, 13, and 22, we
need to compute generators for the tangent cones corresponding to ε-active con-
straints. In the unconstrained and bound-constrained cases, the 2n coordinate direc-
tions always include an appropriate set of generators. For linear constraints, however,
this is not the case; instead, the set of directions depends on AI and AE .

Our method for generating appropriate conforming search directions follows [24].
Let VP and VL be formed as in (3.1). Whenever possible the following theorem is
used to compute a set of generators for T (x, ε).

Theorem 4.1 ([24]). Suppose N(x, ε) is generated by the positive span of the
columns of the matrix VP and the linear span of the columns of the matrix VL :

N(x, ε) = {v | v = VPλ+ VLα, λ ≥ 0},

where λ and α denote vectors of appropriate length. Let Z be a matrix whose columns
are a basis for the nullspace of V TL , and N be a matrix whose columns are a basis for
the nullspace of V TP Z. Finally, suppose V TP Z has full row rank implying a matrix R
exists satisfying V TP ZR = I. Then T (x, ε) is the positive span of the columns of −ZR
together with the linear span of the columns of ZN :

T (x, ε) = {w | w = −ZRu+ ZNξ, u ≥ 0},

where u and ξ denote vectors of appropriate length.
In order to determine if Theorem 4.1 is applicable, LAPACK [1] is used to com-

pute a singular value decomposition of V TP Z. If the number of singular values greater
than 10−12 equals the number of rows in V TP Z, we say V TP Z has full row rank. We
then construct R from the singular value decomposition of V TP Z. Thus, whenever
possible, linear algebra is used to explicitly compute generators for T (x, ε). The fol-
lowing corollary provides an upper bound on the number of directions necessary in
this case.

Corollary 4.2. Suppose that generators Gk for the tangent cone T (x, ε) are
computed according to Theorem 4.1. Then

|Gk| = 2nz − nr,

where nz = dim(Z) and nr = dim(V TP Z). In particular,

|Gk| ≤ 2n.

Proof. We know that the magnitude of Gk is given by the number of columns in
R plus twice the number of columns in N . Since R denotes the pseudoinverse of V TP Z



20 J. D. Griffin, T. G. Kolda, and R. M. Lewis

and N its nullspace basis matrix we must have that R is an nz ×nr matrix and N an
nz × (nz − r) matrix where

nz = dim(Z) and nr = dim(V TP Z).

Thus the total number of generators is given by

nr + 2(nz − nr) = 2nz − nr ≤ 2n,

since nz ≤ n.
Note that whenever Theorem 4.1 is applicable, Corollary 4.2 implies that the num-

ber of search directions is less than twice the dimension of the nullspace of the equality
constraints; furthermore, the presence of inequality constraints can only reduce this
quantity.

If we are unable to apply Theorem 4.1, i.e., if V TP Z fails to have a right inverse,
we use the C-library cddlib developed by Komei Fukuda [8] that implements the dou-
ble description method of Motzkin et al. [29]. In this case there is no upper bound
on the number of necessary search directions in terms of the number of variables.
In fact, though the total number of necessary search directions is always finite (see
[20]), their number can be combinatorially large. In §5 we report a case where the
ε-active constraints encountered require more than 220 vectors to generate the corre-
sponding tangent cone. Fortunately, this combinatorial explosion appears to be more
a worst-case example than something we would expect to encounter in real life; in all
remaining results presented in §5, a modest number of search directions was required
when Theorem 4.1 was inapplicable.

4.5. Direction caching. Further efficiency can be achieved through the caching
of tangent cone generators. Every time a new set of generators is computed, it can be
cached according to the set of active constraints. Moreover, even when εk changes, it
is important to track whether or not the set of active constraints actually changes as
well. Results on using cached directions are reported in §5. In problem EXPFITC,
the search directions are modified to incorporate new ε-active constraints 98 times.
However, because generators are cached, new directions are only computed 58 times
and the cache is used 40 times.

In order for Condition 3.2 to be satisfied,
⋃+∞
k=1Dk should be finite [20]. Reusing

the same generators every time the same active constraints are encountered ensures
this is the case in theory and practice.

4.6. Augmenting the search directions. The purpose of forming generators
for T (xk, εk) is to allow tangential movement along nearby constraints ensuring that
the locally feasible region is sufficiently explored. But these directions necessarily do
not point towards the boundary. In order to allow boundary points to be approached
directly, additional search directions can be added. Two candidates for extra search
directions are shown in Figure 4.1. In our experiments the (projected) constraint
normals were added to the corresponding set of conforming search directions. That
is, we append the columns of the matrix (ZZ)TVP , where Z and VP are defined in
Theorem 4.1.

Augmenting the search directions is allowed by the theory and tends to reduce
the overall run time because it enables direct steps to the boundary.

5. Numerical results. Our goal is to numerically verify the effectiveness of the
asynchronous GSS algorithm for linearly-constrained problems. Algorithm 1 is imple-
mented in APPSPACK Version 5.0.1, including all the implementation enhancements



Asynchronous Parallel GSS for Linearly-Constrained Optimization 21

Fig. 4.1. Two options for additional search directions are the coordinate directions (left)
or the normals to the linear inequality constraints (right).

outlined in §4. All problems were tested on Sandia’s Institutional Computing Cluster
(ICC) with 3.06GHz Xeon processors and 2GB RAM per node.

5.1. Test Problems. We test our method on problems from the CUTEr (Con-
strained and Unconstrained Testing Environment, revisited) test set [5]. We selected
every problem with general linear constraints and 1000 or fewer variables, for a total
of 119 problems. We divide these problems into three groups:

• Small (1–10 variables): 72 (6 of which have trivial feasible regions)
• Medium (11–100 variables): 24
• Large (101–1000 variables): 23

The CUTEr test set is specifically designed to challenge even the most robust,
derivative-based optimization codes. Consequently, we do not expect to be able to
solve all of the test problems. Instead, our goal is to demonstrate that we can solve
more problems than have ever been solved before using a derivative-free approach,
including problems with constraint degeneracies. To the best of our knowledge, this
is the largest set of test problems ever attempted with a derivative-free method for
linearly-constrained optimization.

5.2. Choosing a starting point. In general, we used the initial points provided
by CUTEr. If the provided point was infeasible, however, we instead found a starting
point by solving the following program using MATLAB’s linprog function:

minimize 0

subject to
cL ≤ AIx ≤ cU

AEx = b.

(5.1)

If the computed solution to the first problem was still infeasible, we applied MAT-
LAB’s quadprog function to

minimize ‖x− x0 ‖2
2

subject to
cL ≤ AIx ≤ cU

AEx = b.

(5.2)

Here, x0 is the (infeasible) initial point provided by CUTEr. Using this approach, we
were able to find feasible starting points for every problem save ACG, HIMMELBJ,
and NASH.



22 J. D. Griffin, T. G. Kolda, and R. M. Lewis

5.3. Parameter Choices. The following parameters were used to initialize Al-
gorithm 1: (a) ∆tol = 1.0 × 10−5, (b) ∆min = 2.0 × 10−5, (c) δ0 = 1, (d) εmax =
2.0× 10−5, (e) qmax = number of processors, and (f) α = 0.01. Additionally, for the
snap procedure outlined in §4.3, we used εsnap = 0.5× 10−5. We limited the number
of function evaluations to 106 and put a lower bound on the objective value of -109

(as a limit for unboundedness). For extra search directions, as described in §4.6, we
added the outward pointing constraint normals.

5.4. Numerical results. Numerical results on all the test problems are pre-
sented in Tables 5.1–5.4. Detailed descriptions of what each column indicates are
shown in Figure 5.1. Note that the sum of F-Evals and F-Cached yields the total
number of function evaluations; likewise, the sum of D-LAPACK, D-CDDLIB, and
D-Cached is the number of times that directions needed to be computed because the
set of ε-active constraints changed.

• Problem: Name of the CUTEr test problem.
• n/mb/mi/me: Number of variables, bound constraints, inequality constraints, and
equality constraints, respectively.
• f(x∗): Final solution.
• Soln. Acc.: Relative accuracy of solution as compared to SNOPT [9]:

Re(α, β) =
β − α

max{1, |α|, |β|)}
,

where α is the final APPSPACK objective value and β is the final SNOPT objective value. A
positive value indicates that the APPSPACK solution is better than SNOPT’s.
• F-Evals: Number of actual function evaluations, i.e., not counting cached function values.
• F-Cached: Number of times that cached function values were used.
• Time (sec): Total parallel run-time.
• D-LAPACK/D-CDDLIB: Number of times that LAPACK or CDDLIB was called,
respectively, to compute the search directions.
• D-Cached: Number of times that a cached set of search directions was used.
• D-MaxSize: Maximum number of search directions ever used for a single iteration.
• D-Appends: Number of times that additional search directions had to be appended in
Step 23.

Fig. 5.1. Column descriptions for numerical results.

Because each run of an asynchronous algorithm can be different, we ran each
problem a total of ten times and present averaged results. The exception is the
objective value f(x∗), for which we present the best solution. Problems which had
multiple local minima (i.e., whose relative difference between best and worst objective
value is greater than 10−5) are denoted in the tables by an asterisk and Table 5.5
explicitly gives the differences for those cases.

5.4.1. Group 1: 1–10 Variables. Consider first Tables 5.1a and 5.1b, which
show results for 72 linearly-constrained CUTEr problems with up to 10 variables.
Note that some of the problems had as many as 2000 inequality constraints. Six of
the problems had non-existent or trivial feasible regions and so are excluded from our
analysis. Of the 66 remaining problems, APPSPACK was able to solve 63 (95%).

The final objective function obtained by APPSPACK compared favorably to that
obtained by SNOPT, a derivative-based code. We compare against SNOPT to illus-
trate that it is possible to obtain the same objective values. In general, if derivatives
are readily available, using a derivative-based code such as SNOPT is preferred. We



Asynchronous Parallel GSS for Linearly-Constrained Optimization 23

Problem n/mb/me/ mi f(x∗) S
o
ln

.
A

cc
.

F
-E

v
a
ls

F
-C

a
ch

ed

T
im

e(
se

c)

D
-L

A
P

A
C

K

D
-C

D
D

L
IB

D
-C

a
ch

ed

D
-M

a
x
S

iz
e

D
-A

p
p

en
d

s

AVGASA 8/ 16/ 0/ 10 -4.6 -6e-11 490/ 50 1.4 6/ 0/ 0 16 0

AVGASB 8/ 16/ 0/ 10 -4.5 2e-11 526/ 56 1.2 9/ 0/ 0 16 0

BIGGSC4 4/ 8/ 0/ 13 -2.4e1 0 108/ 11 1.3 4/ 0/ 0 8 0

BOOTH 2/ 0/ 2/ 0 N/A — equality constraints determine solution

BT3 5/ 0/ 3/ 0 4.1 -5e-11 127/ 35 1.2 1/ 0/ 0 4 0

DUALC1 9/ 18/ 1/214 6.2e3 -1e-11 866/ 140 1.5 10/ 0/ 0 16 0

DUALC2 7/ 14/ 1/228 3.6e3 6e-12 278/ 35 1.2 10/ 0/ 0 12 0

DUALC5 8/ 16/ 1/277 4.3e2 -3e-10 527/ 58 1.5 6/ 1/ 0 15 0

DUALC8 8/ 16/ 1/502 1.8e4 -6e-10 503/ 58 1.4 9/ 0/ 4 14 0

EQC 9/ 0/ 0/ 3 N/A — upper bound less than lower bound

EXPFITA 5/ 0/ 0/ 22 1.1e-3 -3e-10 1081/ 501 1.5 11/ 0/ 0 10 0

EXPFITB 5/ 0/ 0/102 5.0e-3 -5e-10 467/ 175 1.2 29/ 0/ 0 10 0

EXPFITC 5/ 0/ 0/502 2.3e-2 -2e-8 3372/1471 3.4 17/41/18 32 11

EXTRASIM 2/ 1/ 1/ 0 1.0 0 18/ 1 1.0 2/ 0/ 1 2 0

GENHS28 10/ 0/ 8/ 0 9.3e-1 -2e-10 143/ 45 1.1 1/ 0/ 0 4 0

HATFLDH 4/ 8/ 0/ 13 -2.4e1 0 121/ 12 1.2 4/ 0/ 0 8 0

HIMMELBA 2/ 0/ 2/ 0 N/A — upper bound less than lower bound

HONG 4/ 8/ 1/ 0 2.3e1 -4e-11 245/ 53 1.0 4/ 0/ 2 6 0

HS105 8/ 16/ 0/ 1 1.0e3 -1e-11 1447/ 192 1.4 5/ 0/ 0 16 0

HS112 10/ 10/ 3/ 0 -4.8e1 -3e-9 1810/ 166 1.2 13/ 0/ 1 14 0

HS21 2/ 4/ 0/ 1 -1.0e2 -8e-10 88/ 21 1.1 1/ 0/ 0 4 0

HS21MOD 7/ 8/ 0/ 1 -9.6e1 -1e-16 1506/ 254 1.2 3/ 0/ 2 14 0

HS24 2/ 2/ 0/ 3 -1.0 -4e-10 67/ 6 1.1 2/ 0/ 1 4 0

HS268 5/ 0/ 0/ 5 Failed — evaluations exhausted

HS28 3/ 0/ 1/ 0 0.0 0 145/ 52 1.4 1/ 0/ 0 4 0

HS35 3/ 3/ 0/ 1 1.1e-1 1e-10 171/ 33 1.0 1/ 0/ 0 6 0

HS35I 3/ 6/ 0/ 1 1.1e-1 -9e-10 124/ 30 1.0 1/ 0/ 0 6 0

HS35MOD 3/ 4/ 0/ 1 2.5e-1 0 73/ 1 1.1 2/ 0/ 0 4 0

HS36 3/ 6/ 0/ 1 -3.3e3 0 81/ 3 1.1 3/ 0/ 0 6 0

HS37 3/ 6/ 0/ 2 -3.5e3 -8e-11 131/ 25 1.1 1/ 0/ 0 6 0

HS41 4/ 8/ 1/ 0 1.9 -5e-11 168/ 35 1.0 2/ 0/ 0 6 0

HS44∗ 4/ 4/ 0/ 6 -1.5e1 0 99/ 10 1.0 5/ 0/ 0 8 0

HS44NEW ∗ 4/ 4/ 0/ 6 -1.5e1 0 137/ 12 1.1 4/ 0/ 0 8 0

HS48 5/ 0/ 2/ 0 0.0 0 261/ 69 1.8 1/ 0/ 0 6 0

HS49 5/ 0/ 2/ 0 1.6e-7 -2e-7 24525/8315 3.2 1/ 0/ 0 6 0

HS50 5/ 0/ 3/ 0 0.0 0 279/ 99 1.5 1/ 0/ 0 4 0

Table 5.1a
CUTEr problems with 10 or fewer variables, tested on 20 processors.

do note, however, that APPSPACK converged to different solutions on different runs
on HS44 and HS44NEW. This is possibly due to the problems having multiple local
minima. Otherwise, APPSPACK did at least as well as SNOPT on all 63 problems,
comparing six digits of relative accuracy. In fact, the difference between objective
values was greater than 10−6 on only one problem, HS54. In this case APPSPACK
converged to a value of -.19 while SNOPT converged to 0. Again, we attribute such



24 J. D. Griffin, T. G. Kolda, and R. M. Lewis

Problem n/mb/me/ mi f(x∗) S
o
ln

.
A

cc
.

F
-E

v
a
ls

F
-C

a
ch

ed

T
im

e(
se

c)

D
-L

A
P

A
C

K

D
-C

D
D

L
IB

D
-C

a
ch

ed

D
-M

a
x
S

iz
e

D
-A

p
p

en
d

s

HS51 5/ 0/ 3/ 0 0.0 0 110/ 34 1.0 1/ 0/ 0 4 0

HS52 5/ 0/ 3/ 0 5.3 -9e-11 123/ 42 1.0 1/ 0/ 0 4 0

HS53 5/ 10/ 3/ 0 4.1 -1e-9 122/ 41 2.1 2/ 0/ 1 4 0

HS54 6/ 12/ 1/ 0 -1.9e-1 2e-1 271/ 42 1.2 3/ 0/ 1 10 0

HS55 6/ 8/ 6/ 0 6.3 5e-11 20/ 1 1.1 1/ 1/ 0 3 0

HS62 3/ 6/ 1/ 0 -2.6e4 -6e-10 376/ 146 1.1 1/ 0/ 0 4 0

HS76 4/ 4/ 0/ 3 -4.7 4e-11 243/ 39 1.1 3/ 0/ 0 8 0

HS76I 4/ 8/ 0/ 3 -4.7 4e-11 208/ 36 1.8 3/ 0/ 0 8 0

HS86 5/ 5/ 0/ 10 -3.2e1 -3e-11 160/ 29 1.2 4/ 1/ 0 11 0

HS9 2/ 0/ 1/ 0 -5.0e-1 0 57/ 5 1.1 1/ 0/ 0 2 0

HUBFIT 2/ 1/ 0/ 1 1.7e-2 -1e-10 68/ 18 1.4 2/ 0/ 0 4 0

LIN 4/ 8/ 2/ 0 -1.8e-2 -2e-10 68/ 0 1.2 1/ 0/ 0 4 0

LSQFIT 2/ 1/ 0/ 1 3.4e-2 -1e-10 67/ 20 1.1 2/ 0/ 0 4 0

ODFITS 10/ 10/ 6/ 0 -2.4e3 1e-12 15807/4695 3.0 1/ 0/ 0 8 0

OET1 3/ 0/ 0/1002 5.4e-1 3e-10 722/ 148 2.1 0/ 8/ 0 8 0

OET3 4/ 0/ 0/1002 4.5e-3 -6e-7 1347/ 344 2.5 2/ 8/ 0 107 1

PENTAGON 6/ 0/ 0/ 15 1.4e-4 -3e-10 3089/ 783 1.5 4/ 0/ 0 12 0

PT 2/ 0/ 0/ 501 1.8e-1 4e-10 496/ 159 1.6 0/ 17/ 0 10 0

QC 9/ 18/ 0/ 4 -9.6e2 4e-12 188/ 9 1.6 8/ 0/ 0 14 0

QCNEW 9/ 0/ 0/ 3 N/A — upper bound less than lower bound

S268 5/ 0/ 0/ 5 Failed — evaluations exhausted

SIMPLLPA 2/ 2/ 0/ 2 1.0 0 452/ 110 1.1 2/ 0/ 0 4 0

SIMPLLPB 2/ 2/ 0/ 3 1.1 0 382/ 97 1.3 3/ 0/ 0 4 0

SIPOW1 2/ 0/ 0/2000 -1.0 0 130/ 233 2.0 0/104/ 1 6 0

SIPOW1M 2/ 0/ 0/2000 -1.0 0 137/ 227 2.0 0/100/ 0 6 0

SIPOW2 2/ 0/ 0/2000 -1.0 0 176/ 324 1.9 148/ 0/ 0 4 0

SIPOW2M 2/ 0/ 0/2000 -1.0 0 179/ 324 2.2 149/ 0/ 0 4 0

SIPOW3 4/ 0/ 0/2000 5.3e-1 -1e-10 1139/ 252 3.7 115/ 4/ 0 13 1

SIPOW4 4/ 0/ 0/2000 Failed — empty tangent cone encountered

STANCMIN 3/ 3/ 0/ 2 4.2 0 69/ 21 1.0 3/ 0/ 0 6 0

SUPERSIM 2/ 1/ 2/ 0 N/A — equality constraints determine solution

TAME 2/ 2/ 1/ 0 0.0 0 38/ 22 1.6 2/ 0/ 0 2 0

TFI2 3/ 0/ 0/ 101 6.5e-1 0 695/ 175 1.2 36/ 0/ 0 6 0

TFI3 3/ 0/ 0/ 101 4.3 7e-11 83/ 31 1.1 13/ 0/ 0 6 0

ZANGWIL3 3/ 0/ 3/ 0 N/A — equality constraints determine solution

ZECEVIC2 2/ 4/ 0/ 2 -4.1 -7e-10 66/ 30 1.1 1/ 0/ 0 4 0

Table 5.1b
CUTEr problems with 10 or fewer variables, tested on 20 processors.

differences to these problems having multiple local minima.
In a few cases, the number of function evaluations (F-Evals) is exceedingly high

(e.g., HS49 or ODFITS). This is partly due to the tight stopping tolerance (∆max =
10−5). In practice, we typically recommend a stop tolerance of ∆max = 10−2. GSS
methods, like steepest descent, quickly find the neighborhood of the solution but are
slow to converge to the exact minimum. An example of this behavior is provided, for



Asynchronous Parallel GSS for Linearly-Constrained Optimization 25

example, in [24].
In general, the set of search directions changed many times over the course of

the iterations. The sum of D-LAPACK and D-CDDLIB is the total number of times
an entirely new set of ε-active constraints was encountered. The value of D-Cached
is the number of times that a previously encountered set of ε-active constraints is
encountered again. In general, a new set of ε-active constraints will yield a different
set of search directions. In a few cases, only one set of search directions was needed to
solve the entire problem (cf., HS28/35/37, etc.), which can be due to having a small
number of constraints or only equality constraints. In other cases, a large number of
different sets of search direction was needed (cf., SIPOW2/2M/3). It is important to
have the capability to handle degenerate vertices; 12 (19%) of the problems that were
solved required CDDLIB to generate search directions.

The total number of search directions required at any single iteration (D-MaxSize)
was 2n or less in 55 (87%) of the cases. The number of search directions can be larger
than 2n if constraint degeneracy is encountered and/or additional search directions
are appended in Step 23. Problem OET3 required 107 at a single iteration. The need to
append search directions (D-Appends), which is unique to the asynchronous method,
occurred in 3 (4%) cases. We attribute this to the benefits of choosing a small value
of εmax.

5.4.2. Group 2: 11–100 Variables. Of the 24 problems in this category, we
were unable to identify feasible starting points in 2 cases, so we ignore these for our
analyses. We were able to solve 16 (73%) of the remaining 22 problems. The problem
of encountering an empty tangent cone, which happened in 3 cases, is like the situation
shown in Figure 2.1(d). It can happen as a function of poor scaling of the variables
when εmax is too large. Problem MAKELA is famously degenerate and requires 220 + 1
generators [24]. On only one problem, KSIP, was the difference in solutions between
APPSPACK and SNOPT greater than 10−6.

Five problems (31%) require more than 50,000 function evaluations. We can
only hope that such behavior does not typify real-world problems with expensive
evaluations. As noted previously, the number of evaluations will be greatly reduced
if ∆tol is increased.

The number of search directions exceeded 2n for five problems. The problem
KSIP required 4144 search directions at one iteration. The problem DUAL1 required
137 appends to the search directions.

We have selected a subset of these moderate-sized problems to compare the syn-
chronous and asynchronous approaches. A major motivation for the asynchronous
version of GSS is to reduce overall parallel runtime. In our experience, many real-
world problems have function evaluation times that are measured in minutes or hours
and that vary substantially from run to run. In these cases, load balancing is a major
issue. In these comparisons, the synchronous is the same algorithm (and software)
except that all trial point evaluations must finish before the algorithm can proceed
beyond Step 8, i.e., Yk = Xk. This comparison may not be ideal but, to the best of
our knowledge, there are no other synchronous parallel versions of pattern search or
GSS to which to compare.

Ideally, we would compare these methods on a collection of real-world problems,
but no such test set exists. We have used this method to solve real-world problems,
but none that is appropriate for publication. Thus, we compare these methods on a
subset of the CUTEr test problems. To make this more like real-world problems, we
add a random time delay of 5 to 15 seconds for each evaluation which corresponds



26 J. D. Griffin, T. G. Kolda, and R. M. Lewis

Problem n/mb/me/ mi f(x∗) S
o
ln

.
A

cc
.

F
-E

v
a
ls

F
-C

a
ch

ed

T
im

e(
se

c)

D
-L

A
P

A
C

K

D
-C

D
D

L
IB

D
-C

a
ch

ed

D
-M

a
x
S

iz
e

D
-A

p
p

en
d

s

AVION2 49/ 98/ 15/ 0 Failed — evaluations exhausted

DEGENLPA 20/ 40/ 15/ 0 Failed — empty tangent cone encountered

DEGENLPB 20/ 40/ 15/ 0 Failed — empty tangent cone encountered

DUAL1 85/170/ 1/ 0 3.5e-2 -1e-7 469011/2893 251.2 142/1/456 301 137

DUAL2 96/192/ 1/ 0 3.4e-2 -4e-8 179609/ 973 121.6 150/1/ 23 191 0

DUAL4 75/150/ 1/ 0 7.5e-1 -3e-8 56124/3178 29.3 90/1/ 13 283 1

FCCU 19/ 19/ 8/ 0 1.1e1 -9e-11 4461/ 358 1.6 7/2/ 1 23 0

GOFFIN 51/ 0/ 0/ 50 0.0 0 13728/ 488 4.3 1/0/ 0 102 0

HIMMELBI 100/200/ 0/ 12 -1.7e3 -6e-10 142476/2720 90.3 94/0/ 18 235 4

HIMMELBJ 45/ 0/ 14/ 0 N/A — could not find initial feasible point

HS118 15/ 30/ 0/ 29 6.6e2 -2e-16 635/ 72 1.2 21/0/ 0 32 0

HS119 16/ 32/ 8/ 0 2.4e2 -3e-11 479/ 34 1.2 14/0/ 0 16 0

KSIP 20/ 0/ 0/1001 1.0 -3e-1 3107/ 120 136.3 2/4/ 0 4144 0

LOADBAL 31/ 42/ 11/ 20 4.5e-1 4e-9 51262/2909 9.1 11/0/ 0 40 0

LOTSCHD 12/ 12/ 7/ 0 2.4e3 -1e-11 270/ 28 1.4 6/0/ 0 10 0

MAKELA 21/ 0/ 0/ 40 Failed — too many generators

NASH 72/ 0/ 24/ 0 N/A — could not find initial feasible point

PORTFL1 12/ 24/ 1/ 0 2.0e-2 -3e-10 946/ 104 1.4 9/0/ 2 22 0

PORTFL2 12/ 24/ 1/ 0 3.0e-2 1e-9 919/ 106 1.3 8/0/ 0 22 0

PORTFL3 12/ 24/ 1/ 0 3.3e-2 4e-10 997/ 109 1.4 10/0/ 0 22 0

PORTFL4 12/ 24/ 1/ 0 2.6e-2 -1e-10 917/ 96 1.2 8/0/ 0 22 0

PORTFL6 12/ 24/ 1/ 0 2.6e-2 4e-9 1098/ 103 1.4 8/0/ 0 22 0

QPCBLEND 83/ 83/ 43/ 31 Failed — empty tangent cone encountered

QPNBLEND 83/ 83/ 43/ 31 Failed — evaluations exhausted

Table 5.2
CUTEr problems with 11–100 variables, tested on 40 processors.

to a difference of three times between the slowest and fastest evaluations; this is very
realistic in our experience. An advantage of this approach is that it is reproducible.
We ran each problem on 5, 10, and 20 processors. Table 5.3 shows the time and
number of function evaluation for each problem; Figure 5.2 show the results as a bar
graph.

Although the asynchronous code did more function evaluations overall, the total
time to solution was reduced in every case save two (PORTFL4 on 5 processors and
LOTSCHD on 20 processors). Thus the asynchronous approach not only gained more
information in less time, but solved each problem in less time. This suggests that
comparisons between asynchronous methods and synchronous methods based merely
upon function evaluations do not tell the whole story.

Note that for the sake of time, to demonstrate this feature, we have used relatively
low time delays, 5-15 seconds. In real life problems these time delays can be measured
in minutes, hours, and even days.

5.4.3. Group 3: 101–1000 Variables. Though the primary focus of our nu-
merical section is on the subset of the CUTEr test problems with 100 variables or less,
we did explore the possibility of solving even larger problems. In this case, we were



Asynchronous Parallel GSS for Linearly-Constrained Optimization 27

Problem n/mb/me/mi S
y
n

c/
A

sy
n

c

P
ro

ce
ss

o
rs

F
-E

v
a
ls

F
-C

a
ch

ed

T
im

e
(s

ec
)

D
-L

A
P

A
C

K

D
-C

D
D

L
IB

D
-C

a
ch

ed

D
-M

a
x
S

iz
e

D
-A

p
p

en
d

s

FCCU 19/ 19/ 8/ 0 S 5 4444/348 15361.9 7/2/ 1 23 0
A 5 3689/216 11649.1 17/1/ 9 23 0
S 10 4446/347 7788.6 7/2/ 1 23 0
A 10 4166/173 5817.7 26/1/78 23 0
S 20 4444/349 4686.2 7/2/ 1 23 0
A 20 5133/239 3513.2 15/2/64 23 0

HS118 15/ 30/ 0/ 29 S 5 624/ 54 2259.2 21/0/ 0 30 0
A 5 553/ 93 1815.3 40/0/ 4 30 0
S 10 624/ 54 1168.2 21/0/ 0 30 0
A 10 648/ 94 939.9 47/0/ 2 30 0
S 20 624/ 54 772.8 21/0/ 0 30 0
A 20 829/225 667.4 48/0/ 1 30 0

HS119 16/ 32/ 8/ 0 S 5 471/ 34 1839.7 13/0/ 0 16 0
A 5 481/ 42 1594.9 18/0/ 0 16 0
S 10 464/ 35 1045.4 13/0/ 0 16 0
A 10 545/ 46 801.1 20/0/ 1 16 0
S 20 474/ 36 822.4 13/0/ 0 16 0
A 20 638/ 56 586.6 21/0/ 1 16 0

LOTSCHD 12/ 12/ 7/ 0 S 5 267/ 26 1148.8 6/0/ 0 10 0
A 5 339/ 38 1112.9 6/0/ 9 10 0
S 10 267/ 26 696.8 6/0/ 0 10 0
A 10 398/ 44 722.6 7/0/14 10 0
S 20 267/ 26 607.9 6/0/ 0 10 0
A 20 464/ 49 585.8 7/0/12 10 0

PORTFL1 12/ 24/ 1/ 0 S 5 918/111 3351.2 9/0/ 2 22 0
A 5 973/ 91 3166.6 10/0/ 1 22 0
S 10 918/111 1818.8 9/0/ 2 22 0
A 10 1155/106 1696.9 9/0/ 2 22 0
S 20 918/111 1161.7 9/0/ 2 22 0
A 20 1422/107 1033.8 11/0/ 4 22 0

PORTFL2 12/ 24/ 1/ 0 S 5 963/111 3513.4 8/0/ 0 22 0
A 5 808/ 90 2634.7 6/0/ 0 22 0
S 10 961/113 1912.0 8/0/ 0 22 0
A 10 980/ 84 1455.6 6/0/ 0 22 0
S 20 962/112 1261.3 8/0/ 0 22 0
A 20 1258/ 92 930.5 9/0/ 2 22 0

PORTFL3 12/ 24/ 1/ 0 S 5 975/109 3544.1 11/0/ 0 22 0
A 5 771/ 80 2510.8 7/0/ 0 22 0
S 10 973/111 1911.8 11/0/ 0 22 0
A 10 973/ 92 1442.3 8/0/ 2 22 0
S 20 971/113 1210.7 11/0/ 0 22 0
A 20 1376/102 998.7 13/0/ 5 22 0

PORTFL4 12/ 24/ 1/ 0 S 5 874/ 94 3157.9 7/0/ 0 22 0
A 5 1148/110 3714.8 11/0/ 4 22 0
S 10 872/ 96 1722.7 7/0/ 0 22 0
A 10 1157/ 94 1706.8 11/0/ 6 22 0
S 20 873/ 95 1061.2 7/0/ 0 22 0
A 20 1251/ 85 911.7 9/0/ 1 22 0

PORTFL6 12/ 24/ 1/ 0 S 5 1217/125 4410.1 9/0/ 0 22 0
A 5 991/110 3205.9 6/0/ 0 22 0
S 10 1217/125 2344.1 9/0/ 0 22 0
A 10 1182/120 1729.0 8/0/ 3 22 0
S 20 1217/125 1489.4 9/0/ 0 22 0
A 20 1495/108 1080.3 11/0/ 6 22 0
Table 5.3

CUTEr problems with an artificial time delay, testing synchronus and asynchronous implemen-
tations on 5, 10, and 20 processors.



28 J. D. Griffin, T. G. Kolda, and R. M. Lewis

Synchronous 5
Asynchronous 5
Synchronous 10
Asynchronous 10
Synchronous 20
Asynchronous 20

  0

  2,000

  4,000

  6,000

  8,000

  10,000

  12,000

  14,000

  16,000

PO
RT

FL
6

PO
RT

FL
4

PO
RT

FL
3

PO
RT

FL
2

PO
RT

FL
1

LO
TS

CH
D

H
S1

19

H
S1

18

FC
CU

 T
im

e(
se

c)

 

Synchronous 5
Asynchronous 5
Synchronous 10
Asynchronous 10
Synchronous 20
Asynchronous 20

  0

  1,000

  2,000

  3,000

  4,000

  5,000

  6,000

PO
RT

FL
6

PO
RT

FL
4

PO
RT

FL
3

PO
RT

FL
2

PO
RT

FL
1

LO
TS

CH
D

H
S1

19

H
S1

18

FC
CU

 F
un

ct
io

n 
Ev

al
ua

tio
ns

 Fig. 5.2. Comparisons of wall clock time (top) and function evaluations (bottom) for syn-
chronous and asynchronous runs on 5, 10, and 20 processors.

able to solve 11 (48%) of the 23 problems. On problem STATIC3, both APPSPACK
and SNOPT detected unboundedness when the objective value dropped below -109

and -1014 respectively. The remaining 10 problems had bounded objective values. On
5 of the bounded problems we did worse than SNOPT and on 5 problems we did as
well with the largest of these having 505 variables and 1008 inequality constraints.

For the problems we could not solve, we suspect the issue depends largely on the
effects of inadequate scaling — i.e., the different parameters are based on entirely
different scales and cannot be directly compared. As a result, our check for feasi-
bility of the trial points fails because it depends on the scaling but we do not have
complete scaling information (which was the case in all four failed problems) because
bound constraints are not specified. In practice, we would rely on problem-specific
information provided by the scientists and engineers.

The maximum number of function evaluations being exceeded was due to the
curse of dimensionality; that is, the lower bound on κ(G) from (3.2) drops to zero
as the number of variables increases, meaning that the search directions do not do
as well at spanning the feasible region. For example, in the case of unconstrained



Asynchronous Parallel GSS for Linearly-Constrained Optimization 29

Problem n/ mb/me/ mi f(x∗) S
o
ln

.
A

cc
.

F
-E

v
a
ls

F
-C

a
ch

ed

T
im

e(
se

c)

D
-L

A
P

A
C

K

D
-C

D
D

L
IB

D
-C

a
ch

ed

D
-M

a
x
S

iz
e

D
-A

p
p

en
d

s

AGG 163/ 0/ 36/ 452 Failed — could not find initial feasible point

DUAL3 111/ 222/ 1/ 0 1.4e-1 -8e-8 253405/ 1172 204.6 200/ 1/154 262 52

GMNCASE1 175/ 0/ 0/ 300 2.7e-1 4e-7 406502/ 558 1189.0 283/ 0/ 13 373 3

GMNCASE2 175/ 0/ 0/1050 Failed — empty tangent cone encountered

GMNCASE3 175/ 0/ 0/1050 Failed — function evaluations exhausted

GMNCASE4 175/ 0/ 0/ 350 Failed — empty tangent cone encountered

HYDROELM 505/1010/ 0/1008 -3.6e6 -3e-7 56315/ 4247 5238.3 286/ 1/ 3 1422 3

HYDROELS 169/ 338/ 0/ 336 -3.6e6 3e-12 9922/ 645 49.6 96/ 0/ 0 334 0

PRIMAL1 325/ 1/ 0/ 85 -3.5e-2 -8e-10 393127/ 9981 4886.2 79/ 0/585 1031 296

PRIMAL2 649/ 1/ 0/ 96 Failed — scaling: iterates became infeasible

PRIMAL3 745/ 1/ 0/ 111 Failed — scaling: iterates became infeasible

PRIMALC1 230/ 215/ 0/ 9 -1.1 -1 73846/ 2535 294.0 4/ 0/ 10 460 0

PRIMALC2 231/ 229/ 0/ 7 -2.3e3 -3e-1 637282/ 1036 1359.5 3/ 0/ 0 462 0

PRIMALC5 287/ 278/ 0/ 8 -1.3 -1 16954/ 919 209.5 2/ 0/ 0 574 0

PRIMALC8 520/ 503/ 0/ 8 Failed — max wall-time hit

QPCBOEI1 384/ 540/ 9/ 431 Failed — Function evaluations exhausted

QPCBOEI2 143/ 197/ 4/ 181 Failed — scaling: iterates became infeasible

QPCSTAIR 467/ 549/209/ 147 1.4e7 -6e-1 475729/11636 8683.7 8/97/ 0 353 0

QPNBOEI1 384/ 540/ 9/ 431 Failed — scaling: iterates became infeasible

QPNBOEI2 143/ 197/ 4/ 181 Failed — scaling: iterates became infeasible

QPNSTAIR 467/ 549/209/ 147 Failed — empty tangent cone encountered

SSEBLIN 194/ 364/ 48/ 24 7.9e7 -8e-1 853875/55858 1865.8 157/ 0/ 6 288 0

STATIC3 434/ 144/ 96/ 0 -1.0e9 -1 23363/ 0 449.1 0/ 1/ 0 768 0

Table 5.4
CUTEr problems with 100 or more variables, tested on 60 processors.

Problem (n ≤ 10) Rel. Diff.

HS44 .13

HS44NEW .13

Problem (10 < n ≤ 100) Rel. Diff.

None –

Problem (n > 100) Rel. Diff.

SSEBLIN 1e-4

Table 5.5
Problems whose best and worst objective value, obtained from 10 separate asynchronous runs,

had a relative difference greater than 10−5.

optimization, κ(G) degrades like 1/
√
n [18]. However, we were able to solve problem

HYDROELS, with 169 parameters, using only 9,922 function evaluations.

5.5. Improving performance of GSS. In this section we suggest some strate-
gies to improve the performance of GSS, especially in cases where GSS fails to con-
verge normally. As examples, we consider all CUTEr test problems with 100 or fewer
variables that exit abnormally using the default algorithm parameter settings; this
accounts for 11% of the problems.



30 J. D. Griffin, T. G. Kolda, and R. M. Lewis

Modifications were made to the following input parameters to improve perfor-
mance: s, the scaling vector; ∆tol, the final step tolerance; x0, the initial point; and
α, the sufficient decrease parameter. There are two additional parameters that can be
used in specific situations: ftol, the function value tolerance; and εmach, the tolerance
on constraint feasibility. Both of these parameters are adjustable in APPSPACK.
The function tolerance parameter ftol is standard in optimization codes and allows
the algorithm to exit if the current iterate satisfies f(xk) < ftol. This parameter
defaults to −∞ in APPSPACK. The parameter εmach is used to define constraint
feasibility and defaults to 10−12. Because of numerical round-off, any algorithm that
uses null-space projections to remain feasible must, for practical purposes, permit
small nonzero constraint violations.

By tuning these six parameters, APPSPACK exited normally for all problems in
this category with results summarized in Table 5.6.

Problem Fix f(x∗) S
o
ln

.
A

cc
.

F
-E

v
a
ls

F
-C

a
ch

ed

T
im

e(
se

c)

D
-L

A
P

A
C

K
D

-C
D

D
L

IB
D

-C
a
ch

ed

D
-M

a
x
S

iz
e

D
-A

p
p

en
d

s

AVION2 new x0, α = 104 9.5e7 -1e-11 2196/ 124 2.7 0/4/ 6 72 0

DEGENLPA s← 10−3s, ∆tol ← 10−7∆tol 3.1 -9e-4 1437/ 230 2.3 7/0/ 0 10 0

DEGENLPB s← 10−3s, ∆tol ← 10−7∆tol -31 -4e-4 1433/ 196 2.3 7/0/ 0 10 0

HS268 s =
[
1 1 10 10 100

]T
4.5e-2 -4e-2 33674/7150 2.5 3/0/ 1 10 0

MAKELA ftol = 10−10 0.0 -2e-16 4514/ 102 2.9 0/0/ 0 42 0

QPCBLEND new x0, εmach = 5× 10−9 0.0 -9e-3 17/ 0 2.6 0/1/ 0 107 0

QPNBLEND new x0, εmach = 5× 10−9 0.0 -8e-3 17/ 0 2.6 0/1/ 0 107 0

S268 s =
[
1 1 10 10 100

]T
4.5e-2 -5e-2 35758/7685 3.7 3/0/ 0 10 0

SIPOW4 ∆tol ← 10−1∆tol 2.7e-01 -3e-10 125/ 43 4.3 5/1/ 0 11 0

Table 5.6
Fixes to CUTEr problems with 100 or fewer variables that had abnormal exits.

Scaling is, in general, a problem for derivative-free methods that do not estimate
the gradient. This makes it the first place to look for improvements. Because both
HS268 and S268 lacked bound constraints, no scaling was used (see §4.1). Ideally, an
appropriate scaling vector can be determined from knowledge about the underlying
application. Barring that, we can sample the objective functions around the initial
point. Defining

di =
1
20

10∑
k=−9

∣∣∣∣f (x0 +
k

10
ei

)
− f

(
x0 −

k − 1
10

ei

)∣∣∣∣ ,
yields d ≈

[
2e4, 3e4, 4e3, 7e3, 30

]
for both problems. Thus f(x) is most sensitive to

changes in x1 and x2 and least sensitive to changes in x5. Using the scale vector
s =

[
1, 1, 10, 10, 100

]T (the order or magnitude differences between the entries in d)
reduces the number function evaluations from more than one million to less than
36,000 for both problems.

Decreasing the final step tolerance is normally used to increase solution accuracy;
however, decreasing this parameter can also be beneficial when an empty tangent
cone is encountered, as was the case for SIPOW4, DEGENLPA, and DEGENLPB.



Asynchronous Parallel GSS for Linearly-Constrained Optimization 31

An empty tangent cone indicates that the corresponding ε-active constraints spans Rn
as Figure 2.1(d) illustrates. Step 13 in Algorithm 1 implies that ε is bounded below
by the smallest step size, δk+1, that is in turn bounded by ∆tol. Hence, decreasing
∆tol relaxes this bound and can reduce the final number of ε-active constraints. For
DEGENLPA and DEGENLPB, reducing ∆tol alone was insufficient; therefore, the
scaling vector was also reduced so that even fewer constraints were identified as active.

Another option is to try different starting points. These can be generated, for
example, by doing a sampling in parameter space and choosing the best feasible point.
In the three problems where this proved successful, we obtained a different starting
point by using a different technique to project the infeasible CUTEr point to the
feasible region. An alternate feasible starting point is generated by “snapping” the
original infeasible point to the boundary, as described in §4.3. This technique is not
always guaranteed to produce a feasible point but did so for the three problems under
consideration here.

Both QPNBLEND and QPCBLEND benefited from a different starting point.
However, both runs still resulted in an error: no trial points. This typically occurs
because the projection of the trial points onto the equality constraints is not exact
enough. This can be remedied by increasing the parameter εmach, as described above,
thereby loosening the required tolerance.

Problem AVION2 also benefits from a different starting point but still requires a
large number of function evaluations. This is because the sufficient decrease tolerance
is too loose and new iterates with only miniscule improvements in the function value
are accepted. In this case, we observed that the function values were all relatively
large and so increasing α would force more improvement for accepting new best points.

The final problem in this category is MAKELA where the tangent cone at the solution
is degenerate, requiring over 220 generators. This is fundamentally unrepairable for
GSS; however, we can do a workaround. If the user happens to know the target
objective value, then we can specify the function tolerance, ftol. Making this change
for MAKELA enables the method to exit successfully.

The following problems had best and worst objective values (found over ten av-
eraged runs) that differed by a value greater than 10−5: HS268 had a maximum
difference of .003, S268 had a maximum difference of .005, and DEGENLPA had a value
of 3.06 for one run and 4.59 for the remaining nine runs.

6. Conclusions. We have presented an asynchronous generating set search algo-
rithm for linearly constrained optimization that is provably convergent to first-order
optimal points; furthermore, we have demonstrated an implementation that is effec-
tive on a wide range of CUTEr test problems. This paper serves to bridge the gap
between existing synchronous GSS methods that support linear constraints [18, 24, 25]
and asynchronous GSS methods that support bound constraints [11, 17]. The syn-
chronous methods work with a single step size at each iteration and so need only
consider one tangent cone at a time, though that tangent cone may change from it-
eration to iteration. The asynchronous methods for bound-constrained problems rely
on the fact that, even though multiple step sizes are in play, a single fixed set of
generators is sufficient in all situations, namely, the coordinate search directions. In
this paper, we bridge the gaps between these two approaches. We develop a strat-
egy to handle multiple tangent cones simultaneously by appending additional search
directions when needed.

In addition to theoretical results, we have also provided practical implementation
details that can impact overall efficiency and performance, including scaling, func-



32 J. D. Griffin, T. G. Kolda, and R. M. Lewis

tion caching, snapping to the boundary, augmenting search directions, and direction
caching. All enhancements have been implemented in version 5 of APPSPACK. Ad-
ditionally, we expect function and direction caching to be useful when supporting
nonlinear constraints such as [19], where a sequence of related optimization problems
is solved for the same set of linear constraints.

We have also provided an extensive numerical study of the ability of GSS methods
to handle linear constraints, extending results in [24, 16]. To the best of our knowl-
edge, this is the most extensive study of direct search methods for linearly-constrained
optimization problems. In practice, GSS methods are typically applied to problems
with 100 or fewer variables. On CUTEr test problem of this size, with default param-
eter settings, APPSPACK is able to solve 89% of the problems. With minor changes
to the input parameters we were able to obtains solutions for the remainder of these
problems. Thus the numerical results demonstrate the ability of GSS methods to
reliably obtain (as theory predicts) optimal objective values on problem sizes that
are typical in practice for this approach. It is worth noting that, while GSS methods
appear be restricted by problem dimension, they are able to handle a large number
of constraints. Furthermore, we have once again [15, 17] shown the benefits of the
asynchronous approach, which nearly always reduces the overall execution time, in
many cases by 25% or more.

Acknowledgments. The authors wish to thank Rakesh Kumar and Virginia
Torczon for their invaluable insights and stimulating discussions. We also thank the
referees and editor for their careful reading of the manuscript and valuable suggestions
for improvement.

REFERENCES

[1] E. Anderson, Z. Bai, C. Bischof, S. Blackford, J. Demmel, J. Dongarra, J. Du Croz,
A. Greenbaum, S. Hammarling, A. McKenney, and D. Sorensen, LAPACK Users’
Guide, SIAM, Philadelphia, PA, third ed., 1999.

[2] C. Audet and J. E. Dennis, Jr., Analysis of generalized pattern searches, SIAM J. Optimiz.,
13 (2003), pp. 889–903.

[3] S. I. Chernyshenko and A. V. Privalov, Internal degrees of freedom of an actuator disk
model, J. Propul. Power., 20 (2004), pp. 155–163.

[4] M. L. Chiesa, R. E. Jones, K. J. Perano, and T. G. Kolda, Parallel optimization of forging
processes for optimal material properties, in NUMIFORM 2004: The 8th International
Conference on Numerical Methods in Industrial Forming Processes, vol. 712 of AIP Con-
ference Proceedings, 2004, pp. 2080–2084.

[5] A. Conn, N. Gould, A. Sartenaer, and P. Toint, Convergence properties of an augmented
Lagrangian algorithm for optimization with a combination of general equality and linear
constraints, SIAM J. Optimiz., 6 (1996), pp. 674–703.

[6] A. R. Conn, N. I. M. Gould, and P. L. Toint, Trust-Region Methods, SIAM, Philadelphia,
PA, 2000.

[7] G. Croue, Optimisation par la méthode APPS d’un problème de propagation d’interfaces (in
French), master’s thesis, Ecole Centrale de Lyon, France, 2003.

[8] K. Fukuda, cdd and cddplus homepage. Web page: http://www.cs.mcgill.ca/~fukuda/soft/
cdd_home/cdd.html, McGill University, Montreal, Canada, 2005.

[9] P. E. Gill, W. Murray, and M. A. Saunders, SNOPT: An SQP algorithm for large-scale
constrained optimization, SIAM Rev., 47 (2005), pp. 99–131.

[10] N. I. M. Gould, D. Orban, and Ph. L. Toint, CUTEr and SifDec: a constrained and
unconstrained testing environment, revisited, ACM T. Math. Software, 29 (2003), pp. 373–
394.

[11] G. A. Gray and T. G. Kolda, Algorithm 856: APPSPACK 4.0: Asynchronous parallel pat-
tern search for derivative-free optimization, ACM T. Math. Software, 32 (2006), pp. 485–
507.

http://dx.doi.org/10.1137/S1052623400378742
http://dx.doi.org/10.1063/1.1766841
http://dx.doi.org/10.1063/1.1766841
http://dx.doi.org/10.1137/S1052623493251463
http://dx.doi.org/10.1137/S1052623493251463
http://dx.doi.org/10.1137/S1052623493251463
http://www.cs.mcgill.ca/~fukuda/soft/cdd_home/cdd.html
http://www.cs.mcgill.ca/~fukuda/soft/cdd_home/cdd.html
http://dx.doi.org/10.1137/S0036144504446096
http://dx.doi.org/10.1137/S0036144504446096
http://dx.doi.org/10.1145/962437.962439
http://dx.doi.org/10.1145/962437.962439
http://dx.doi.org/10.1145/1163641.1163647
http://dx.doi.org/10.1145/1163641.1163647


Asynchronous Parallel GSS for Linearly-Constrained Optimization 33

[12] G. A. Gray, T. G. Kolda, K. L. Sale, and M. M. Young, Optimizing an empirical scoring
function for transmembrane protein structure determination, INFORMS J. Comput., 16
(2004), pp. 406–418. Special Issue on Computational Molecular Biology/Bioinformatics.

[13] C. Hernández, Stereo and Silhouette Fusion for 3D Object Modeling from Uncalibrated Images
Under Circular Motion, PhD thesis, Ecole Nationale Supŕieure des Télécommunications,
France, May 2004.

[14] P. D. Hough, T. G. Kolda, and H. A. Patrick, Usage manual for APPSPACK 2.0, Tech.
Report SAND2000-8843, Sandia National Laboratories, Albuquerque, New Mexico and
Livermore, California, 2000.

[15] P. D. Hough, T. G. Kolda, and V. J. Torczon, Asynchronous parallel pattern search for
nonlinear optimization, SIAM J. Sci. Comput., 23 (2001), pp. 134–156.

[16] M. Jacobsen, Real time drag minimization with linear equality constraints, Tech. Report
TRITA-AVE 2005:44, Aeronautical and Vehicle Engineering, Kungliga Tekniska Högskolan,
Stockholm, Sweden, Dec. 2005.

[17] T. G. Kolda, Revisiting asynchronous parallel pattern search for nonlinear optimization, SIAM
J. Optimiz., 16 (2005), pp. 563–586.

[18] T. G. Kolda, R. M. Lewis, and V. Torczon, Optimization by direct search: new perspectives
on some classical and modern methods, SIAM Rev., 45 (2003), pp. 385–482.

[19] T. G. Kolda, R. M. Lewis, and V. Torczon, A generating set direct search augmented La-
grangian algorithm for optimization with a combination of general and linear constraints,
Tech. Report SAND2006-5315, Sandia National Laboratories, Albuquerque, New Mexico
and Livermore, California, Aug. 2006.

[20] T. G. Kolda, R. M. Lewis, and V. Torczon, Stationarity results for generating set search
for linearly constrained optimization, SIAM J. Optimiz., 17 (2006), pp. 943–968.

[21] T. G. Kolda and V. Torczon, On the convergence of asynchronous parallel pattern search,
SIAM J. Optimiz., 14 (2004), pp. 939–964.

[22] T. G. Kolda and V. J. Torczon, Understanding asynchronous parallel pattern search, in
High Performance Algorithms and Software for Nonlinear Optimization, G. Di Pillo and
A. Murli, eds., vol. 82 of Applied Optimization, Kluwer Academic Publishers, Boston,
2003, pp. 316–335.

[23] M. A. Kupinski, E. Clarkson, J. W. Hoppin, L. Chen, and H. H. Barrett, Experimen-
tal determination of object statistics from noisy images, J. Opt. Soc. Am. A, 20 (2003),
pp. 421–429.

[24] R. M. Lewis, A. Shepherd, and V. Torczon, Implementing generating set search meth-
ods for linearly constrained minimization, Tech. Report WM-CS-2005-01, Department of
Computer Science, College of William & Mary, Williamsburg, VA, July 2005. Revised July
2006.

[25] R. M. Lewis and V. Torczon, Pattern search methods for linearly constrained minimization,
SIAM J. Optimiz., 10 (2000), pp. 917–941.

[26] J. Liang and Y.-Q. Chen, Optimization of a fed-batch fermentation process control competi-
tion problem using the NEOS server, P. I. Mech. Eng. I-J. Sys., 217 (2003), pp. 427–342.

[27] G. Mathew, L. Petzold, and R. Serban, Computational techniques for quantification and
optimization of mixing in microfluidic devices. Available at http://www.engineering.

ucsb.edu/~cse/Files/MixPaper.pdf, July 2002.
[28] D. McKee, A dynamic model of retirement in Indonesia, Tech. Report CCPR-005-06, Califor-

nia Center for Population Research On-Line Working Paper Series, USA, Feb. 2006.
[29] T. S. Motzkin, H. Raiffa, G. L. Thompson, and R. M. Thrall, The double description

method, in Contributions to Theory of Games, Volume II, H. W. Kuhn and A. W. Tucker,
eds., Princeton University Press, 1953.

[30] S. O. Nielsen, C. F. Lopez, G. Srinivas, and M. L. Klein, Coarse grain models and the
computer simulation of soft materials, J. Phys.-Condens. Mat., 16 (2004), pp. R481–R512.

[31] V. Torczon, On the convergence of pattern search algorithms, SIAM J. Optimiz., 7 (1997),
pp. 1–25.

http://dx.doi.org/10.1287/ijoc.1040.0102
http://dx.doi.org/10.1287/ijoc.1040.0102
http://csmr.ca.sandia.gov/~tgkolda/ref#SAND2000-8843
http://dx.doi.org/10.1137/S1064827599365823
http://dx.doi.org/10.1137/S1064827599365823
http://dx.doi.org/10.1137/040603589
http://dx.doi.org/10.1137/S003614450242889
http://dx.doi.org/10.1137/S003614450242889
http://dx.doi.org/10.1137/S1052623403433638
http://dx.doi.org/10.1137/S1052623403433638
http://dx.doi.org/10.1137/S1052623401398107
http://www.opticsinfobase.org/abstract.cfm?URI=josaa-20-3-421
http://www.opticsinfobase.org/abstract.cfm?URI=josaa-20-3-421
http://www.cs.wm.edu/~va/research/#25
http://www.cs.wm.edu/~va/research/#25
http://dx.doi.org/10.1137/S1052623497331373
http://journals.pepublishing.com/link.asp?id=p172255148687565
http://journals.pepublishing.com/link.asp?id=p172255148687565
http://www.engineering.ucsb.edu/~cse/Files/MixPaper.pdf
http://www.engineering.ucsb.edu/~cse/Files/MixPaper.pdf
http://www.eldis.org/static/DOC21374.htm
http://dx.doi.org/10.1088/0953-8984/16/15/R03
http://dx.doi.org/10.1088/0953-8984/16/15/R03
http://dx.doi.org/10.1137/S1052623493250780

